Dynamic Coupling Map: Acceleration Space Analysis for Underactuated Robots

Ziad Zamzami, Faïz Ben Amar


Swing-up and throwing tasks for underactuated manipulators are examples of dynamic motions that exhibit highly nonlinear coupling dynamics. One of the key ingredients for such complex behaviors is motion coordination to exploit their passive dynamics. Despite the existence of powerful tools such as nonlinear trajectory optimization, they are usually treated as blackboxes that provide local optimal trajectories. We introduce the Dynamical Coupling Map (DCM), a novel graphical technique, to help gain insight into the output trajectory of the optimization and analyze the capability of underactuated robots. The DCM analysis is demonstrated on the swing up motion of a simplified model of a gymnast on high bar. The DCM shows in a graphical and intuitive way the pivotal role of exploiting the nonlinear inertial forces to reach the unstable equilibrium configuration while taking into account the torque bounds constraints. In this paper, we present the DCM as a posteriori analysis of a local optimal trajectory, found by employing the direct collocation trajectory optimization framework.


  1. Arai, H., Tanie, K., and Shiroma, N. (1998). Nonholonomic control of a three-DOF planar underactuated manipulator. IEEE Trans. Robot. Autom., 14(5):681-695.
  2. A° ström, K. J. and Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica, 36(2):287-295.
  3. Betts, J. T. (1998). Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control. Dyn., 21(2):193-207.
  4. Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.
  5. Gill, P. E., Murray, W., and Saunders, M. A. (2002). SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM J. Optim., 12(4):979- 1006.
  6. Hauser, J. and Murray, R. M. (1990). Nonlinear controllers for non-integrable systems: the Acrobot example. 1990 Am. Control Conf., (1):669-671.
  7. Hauser, K. (2014). Fast interpolation and time-optimization with contact. Int. J. Rob. Res., 33(9):1231-1250.
  8. Ibuki, T., Sampei, M., Ishikawa, A., and Nakaura, S. (2015). Jumping Motion Control for 4-Link Robot Based on Virtual Constraint on Underactuated Joint. Sc.Ctrl.Titech.Ac.Jp, pages 1-6.
  9. Kolda, T. G. and Bader, B. W. (2008). Tensor Decompositions and Applications. SIAM Rev., 51(3):455-500.
  10. Kurazume, R. and Hasegawa, T. (2002). A new index of serial link manipulator performance combining dynamic manipulability and manipulating force ellisoids. 1(8).
  11. Lam, S. and Davison, E. (2006). The real stabilizability radius of the multi-link inverted pendulum. Am. Control Conf. 2006, (2):1814-1819.
  12. Libby, T., Moore, T. Y., Chang-Siu, E., Li, D., Cohen, D. J., Jusufi, A., and Full, R. J. (2012). Tail-assisted pitch control in lizards, robots and dinosaurs. Nature, 481(7380):181-184.
  13. Luca, A. D. and Oriolo, G. (2002). Trajectory Planning and Control for Planar Robots with Passive Last Joint. Int. J. Rob. Res., 21(5-6):575-590.
  14. Lynch, K. and Mason, M. (1996). Dynamic underactuated nonprehensile manipulation. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 7896, 2:889-896.
  15. Nagarajan, U., Kantor, G., and Hollis, R. (2013). Integrated motion planning and control for graceful balancing mobile robots. Int. J. Rob. Res., 32(9-10):1005-1029.
  16. Olfati-Saber, R. (2001). Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. page 307.
  17. Patel, A. and Braae, M. (2013). Rapid turning at highspeed: Inspirations from the cheetah's tail. IEEE Int. Conf. Intell. Robot. Syst., pages 5506-5511.
  18. Posa, M., Cantu, C., and Tedrake, R. (2013). A direct method for trajectory optimization of rigid bodies through contact. Int. J. Rob. Res., 33(1):69-81.
  19. Shkolnik, A. and Tedrake, R. (2008). High-dimensional underactuated motion planning via task space control. 2008 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, pages 3762-3768.
  20. Spong, M. W. (1995). Swing up control problem for the acrobot. IEEE Control Syst. Mag., 15(1):49-55.
  21. Spong, M. W. (1998). Underactuated mechanical systems. Control Probl. Robot. Autom. Springer, pages 135- 150.
  22. Tamegaya, K., Kanamiya, Y., Nagao, M., and Sato, D. (2008). Inertia-coupling based balance control of a humanoid robot on unstable ground. 2008 8th IEEERAS Int. Conf. Humanoid Robot. Humanoids 2008, pages 151-156.
  23. Tedrake, R. (2014). Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems.
  24. Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci., 7(9):907-15.
  25. Wachter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, volume 106.
  26. Wieber, P.-B. (2005). Some comments on the structure of the dynamics of articulated motion. Ruperto Carola Symp. Fast Motions Biomech. Robot.
  27. Wieber Pierre-Brice, Tedrake Russ, K. S. (2015). Modeling and Control of Legged Robots. Springer, 2nd ed edition.
  28. Xin, X. (2013). On simultaneous control of the energy and actuated variables of underactuated mechanical systems-example of the acrobot with counterweight. Adv. Robot., 27(12):959-969.
  29. Xin, X. and Kaneda, M. (2007a). Analysis of the energybased swing-up control of the Acrobot. Int. J. Robust Nonlinear Control, 17(16):1503-1524.
  30. Xin, X. and Kaneda, M. (2007b). Design and analysis of swing-up control for a 3-link gymnastic robot with passive first joint. Proc. IEEE Conf. Decis. Control, 23(6):1923-1928.

Paper Citation

in Harvard Style

Zamzami Z. and Amar F. (2016). Dynamic Coupling Map: Acceleration Space Analysis for Underactuated Robots . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 548-557. DOI: 10.5220/0006012405480557

in Bibtex Style

author={Ziad Zamzami and Faïz Ben Amar},
title={Dynamic Coupling Map: Acceleration Space Analysis for Underactuated Robots},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},

in EndNote Style

JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Dynamic Coupling Map: Acceleration Space Analysis for Underactuated Robots
SN - 978-989-758-198-4
AU - Zamzami Z.
AU - Amar F.
PY - 2016
SP - 548
EP - 557
DO - 10.5220/0006012405480557