Swing Leg Trajectory Optimization for a Humanoid Robot Locomotion

Ramil Khusainov, Alexandr Klimchik, Evgeni Magid


The problem of walking trajectory optimisation for bipedal humanoid robots attracts many researchers because of excessive interest to bipedal locomotion. The main focus is usually on robot dynamics and trajectory planning for predefined walking primitives. In contrast to other works, our paper targets to obtain optimal walking primitive for swing leg trajectory of bipedal humanoid robot walking. Optimal walking primitives are obtained taking into account velocity and acceleration physical limitations of each joint and are derived for different walking parameters such as step size and hip height. To obtain a desired time-optimal trajectory dynamic programing approach is used. It is shown that a new trajectory is performed within a shorter time comparing with commonly used locomotion trajectories for bipedal robots control. The results allow us to assign walking parameters and corresponding walking primitive that maximize robot velocity for predefined environment constraints.


  1. Akhtaruzzaman, M. & Shafie, A. A. (2010) Evolution of Humanoid Robot and contribution of various countries in advancing the research and development of the platform. Control Automation and Systems (ICCAS), 2010 International Conference on.
  2. Channon, P., Hopkins, S. & Pham, D. (1992) Derivation of optimal walking motions for a bipedal walking robot. Robotica, 10 (02), 165-172.
  3. Collins, S., Ruina, A., Tedrake, R. & Wisse, M. (2005) Efficient Bipedal Robots Based on Passive-Dynamic Walkers. Science, 307 (5712), 1082-1085.
  4. Collins, S. H., Wisse, M. & Ruina, A. (2001) A threedimensional passive-dynamic walking robot with two legs and knees. The International Journal of Robotics Research, 20 (7), 607-615.
  5. Erbatur, K. & Kurt, O. (2009) Natural ZMP Trajectories for Biped Robot Reference Generation. IEEE Transactions on Industrial Electronics, 56 (3), 835-845.
  6. Escande, A., Kheddar, A. & Miossec, S. (2013) Planning contact points for humanoid robots. Robotics and Autonomous Systems, 61 (5), 428-442.
  7. Gabbasov, B., Danilov, I., Afanasyev, I. & Magid, E. (2015) Toward a human-like biped robot gait: Biomechanical analysis of human locomotion recorded by Kinect-based Motion Capture system. Mechatronics and its Applications (ISMA), 2015 10th International Symposium on.
  8. Goswami, A. (1999) Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. The International Journal of Robotics Research, 18 (6), 523-533.
  9. Ha, T. & Choi, C.-H. (2007) An effective trajectory generation method for bipedal walking. Robotics and Autonomous Systems, 55 (10), 795-810.
  10. Hera, P. X. M. L., Shiriaev, A. S., Freidovich, L. B., Mettin, U. & Gusev, S. V. (2013) Stable Walking Gaits for a Three-Link Planar Biped Robot With One Actuator. IEEE Transactions on Robotics, 29 (3), 589-601.
  11. Hofmann, A., Popovic, M. & Herr, H. (2009) Exploiting angular momentum to enhance bipedal center-of-mass control. Robotics and Automation, 2009. ICRA 7809. IEEE International Conference on.
  12. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. & Hirukawa, H. (2003) Biped walking pattern generation by using preview control of zeromoment point. Robotics and Automation, 2003. Proceedings. ICRA 7803. IEEE International Conference on.
  13. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K. & Hirukawa, H. (2001) The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on.
  14. Katic, D. & Vukobratovic, M. (2003) Survey of Intelligent Control Techniques for Humanoid Robots. Journal of Intelligent and Robotic Systems, 37 (2), 117-141.
  15. Khusainov, R., Afanasyev, I. & Magid, E. (2016a) Anthropomorphic robot modelling with virtual height inverted pendulum approach in Simulink: step length and period influence on walking stability. The 2016 International Conference on Artificial Life and Robotics (ICAROB 2016). Japan.
  16. Khusainov, R., Sagitov, A., Afanasyev, I. & Magid, E. (2016b) Bipedal robot locomotion modelling with virtual height inverted pendulum in Matlab-Simulink and ROS-Gazebo environments. Journal of Robotics, Networking and Artificial Life, 3 (1).
  17. Khusainov, R., Shimchik, I., Afanasyev, I. & Magid, E. (2015) Toward a human-like locomotion: Modelling dynamically stable locomotion of an anthropomorphic robot in simulink environment. Informatics in Control, Automation and Robotics (ICINCO), 2015 12th International Conference on.
  18. Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S. & Furet, B. (2014a) Compliance Error Compensation in Robotic-Based Milling. In Ferrier, J.-L., Bernard, A., Gusikhin, O. & Madani, K. (Eds.) Informatics in Control, Automation and Robotics: 9th International Conference, ICINCO 2012 Rome, Italy, July 28-31, 2012 Revised Selected Papers. Cham, Springer International Publishing.
  19. Klimchik, A., Chablat, D. & Pashkevich, A. (2014b) Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings. Mechanism and Machine Theory, 79, 1-28.
  20. Klimchik, A., Furet, B., Caro, S. & Pashkevich, A. (2015) Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory, 90, 1-22.
  21. Klimchik, A., Pashkevich, A., Caro, S. & Chablat, D. (2012) Stiffness Matrix of Manipulators With Passive Joints: Computational Aspects. IEEE Transactions on Robotics, 28 (4), 955-958.
  22. Klimchik, A., Pashkevich, A., Chablat, D. & Hovland, G. (2013) Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robotics and Computer-Integrated Manufacturing, 29 (2), 385-393.
  23. Majima, K., Miyazaki, T. & Ohishi, K. (1999) Dynamic gait control of biped robot based on kinematics and motion description in Cartesian space. Electrical Engineering in Japan, 129 (4), 96-104.
  24. Mitobe, K., Capi, G. & Nasu, Y. (2000) Control of walking robots based on manipulation of the zero moment point. Robotica, 18 (06), 651-657.
  25. Motoc, I. M., Sirlantzis, K., Spurgeon, S. & Lee, P. (2014) Zero Moment Point/Inverted Pendulum-Based Walking Algorithm for the NAO Robot. Emerging Security Technologies (EST), 2014 Fifth International Conference on.
  26. Nakamura, M. (2004) Trajectory planning for a leg swing during human walking. IEEE International Conference on Systems, Man and Cybernetics.
  27. Park, J. & Youm, Y. (2007) General ZMP Preview Control for Bipedal Walking. Proceedings 2007 IEEE International Conference on Robotics and Automation.
  28. Pashkevich, A., Dolgui, A. & Chumakov, O. (2002) Optimal control of robotic manipulator for laser cutting applications. 15th Triennial World Congress of the International Federation of Automatic Control. Barcelona, SPAIN, 21th-26th July.
  29. Rai, J. K. & Tewari, R. (2014) Quintic polynomial trajectory of biped robot for human-like walking. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on.
  30. Ratliff, N., Zucker, M., Bagnell, J. A. & Srinivasa, S. (2009) CHOMP: Gradient optimization techniques for efficient motion planning. Robotics and Automation, 2009. ICRA 7809. IEEE International Conference on.
  31. Renders, J. M. & Flasse, S. P. (1996) Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26 (2), 243-258.
  32. Righetti, L. & Auke Jan, I. (2006) Programmable central pattern generators: an application to biped locomotion control. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
  33. Sardain, P. & Bessonnet, G. (2004) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 34 (5), 630-637.
  34. Si, J., Yang, L., Chao, L., Jian, S. & Shengwei, M. (2009) Approximate dynamic programming for continuous state and control problems. Control and Automation, 2009. MED 7809. 17th Mediterranean Conference on.
  35. Tangpattanakul, P. & Artrit, P. (2009) Minimum-time trajectory of robot manipulator using Harmony Search algorithm. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009. 6th International Conference on.
  36. Ude, A., Atkeson, C. G. & Riley, M. (2004) Programming full-body movements for humanoid robots by observation. Robotics and Autonomous Systems, 47 (2- 3), 93-108.
  37. Vukobratovic, M. & Borovac, B. (2004) Zero-moment point - thirty five years of its life. International Journal of Humanoid Robotics, 01 (01), 157-173.
  38. Vukobratovic, M. & Stepanenko, J. (1973) Mathematical models of general anthropomorphic systems. Mathematical Biosciences, 17 (3), 191-242.
  39. Wright, J. & Jordanov, I. (2014) Intelligent Approaches in Locomotion - A Review. Journal of Intelligent & Robotic Systems, 80 (2), 255-277.
  40. Yamaguchi, J., Soga, E., Inoue, S. & Takanishi, A. (1999) Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking. Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on.
  41. Yussof, H., Ohka, M., Yamano, M. & Nasu, Y. (2008) Analysis of Human-Inspired Biped Walk Characteristics in a Prototype Humanoid Robot for Improvement of Walking Speed. Modeling & Simulation, 2008. AICMS 08. Second Asia International Conference on.

Paper Citation

in Harvard Style

Khusainov R., Klimchik A. and Magid E. (2016). Swing Leg Trajectory Optimization for a Humanoid Robot Locomotion . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 130-141. DOI: 10.5220/0006011401300141

in Bibtex Style

author={Ramil Khusainov and Alexandr Klimchik and Evgeni Magid},
title={Swing Leg Trajectory Optimization for a Humanoid Robot Locomotion},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},

in EndNote Style

JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Swing Leg Trajectory Optimization for a Humanoid Robot Locomotion
SN - 978-989-758-198-4
AU - Khusainov R.
AU - Klimchik A.
AU - Magid E.
PY - 2016
SP - 130
EP - 141
DO - 10.5220/0006011401300141