Automatic 3D Point Set Reconstruction from Stereo Laparoscopic Images using Deep Neural Networks

Bálint Antal

Abstract

In this paper, an automatic approach to predict 3D coordinates from stereo laparoscopic images is presented. The approach maps a vector of pixel intensities to 3D coordinates through training a six layer deep neural network. The architectural aspects of the approach is presented and in detail and the method is evaluated on a publicly available dataset with promising results.

References

  1. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.
  2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy) . Oral Presentation.
  3. Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
  4. Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics, pages 249-256.
  5. Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. InInternational Conference on Artificial Intelligence and Statistics , pages 315- 323.
  6. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.
  7. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.
  8. Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A., Rodrigues, M., Sorger, J., Speidel, S., et al. (2013). Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Medical image analysis, 17(8):974- 996.
  9. Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807-814.
  10. Pratt, P., Stoyanov, D., Visentini-Scarzanella, M., and Yang, G.-Z. (2010). Dynamic guidance for robotic surgery using image-constrained biomechanical models. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2010 , pages 77-85. Springer.
  11. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958.
  12. Stoyanov, D., Scarzanella, M. V., Pratt, P., and Yang, G.-Z. (2010). Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2010, pages 275-282. Springer.
  13. Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.
Download


Paper Citation


in Harvard Style

Antal B. (2016). Automatic 3D Point Set Reconstruction from Stereo Laparoscopic Images using Deep Neural Networks . In - SPCS, (PECCS 2016) ISBN , pages 0-0. DOI: 10.5220/0006008001160121


in Bibtex Style

@conference{spcs16,
author={Bálint Antal},
title={Automatic 3D Point Set Reconstruction from Stereo Laparoscopic Images using Deep Neural Networks},
booktitle={ - SPCS, (PECCS 2016)},
year={2016},
pages={},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006008001160121},
isbn={},
}


in EndNote Style

TY - CONF
JO - - SPCS, (PECCS 2016)
TI - Automatic 3D Point Set Reconstruction from Stereo Laparoscopic Images using Deep Neural Networks
SN -
AU - Antal B.
PY - 2016
SP - 0
EP - 0
DO - 10.5220/0006008001160121