Analysis of Input Delay Systems using Integral Quadratic Constraint

Gabriella Szabó-Varga, Gábor Rödönyi

Abstract

The L2-gain computation of a linear time-invariant system with state and input delay is discussed. The input and the state delay are handled separately by using dissipation inequality involving a Lyapunov-Krasovskii functional and integral quadratic constraints. A conic combination of IQCs is proposed for characterizing the input delay, where the coefficients are linear time-invariant systems. The numerical example (a vehicle platoon) confirm that using this dissipativity approach a more effective method for L2-gain computation is obtained.

References

  1. Cheng, G., Ding, Z., and Fang, J. (2012). Dissipativity analysis of linear state/input delay systems. In Abstract and Applied Analysis, volume 2012. Hindawi Publishing Corporation.
  2. Fridman, E. and Shaked, U. (2004). Input delay approach to robust sampled-data H8 control. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 2, pages 1950-1951. IEEE.
  3. Gu, K. (1997). Discretized lmi set in the stability problem of linear uncertain time-delay systems. International Journal of Control, 68(4):923-934.
  4. Gu, K., Kharitonov, V., and Chen, J. (2003). Stability of time-delay systems. Birkhäuser, Boston.
  5. Megretski, A., Jönsson, U., Kao, C., and Rantzer, A. (2010). Control systems handbook, chapter 41: Integral quadratic constraints.
  6. Megretski, A. and Rantzer, A. (1997). System analysis via integral quadratic constraints. Automatic Control, IEEE Transactions on, 42(6):819-830.
  7. Pfifer, H. and Seiler, P. (2015). Integral quadratic constraints for delayed nonlinear and parameter-varying systems. Automatica, 56:36-43.
  8. Rödönyi, G., Gáspár, P., Bokor, J., Aradi, S., Hankovszki, Z., Kovács, R., and Palkovics, L. (2012). Guaranteed peaks of spacing errors in an experimental vehicle string. In 7th IFAC Symposium on Robust Control Design, ROCOND, pages 747-752.
  9. Rödönyi, G. and Varga, G. (2015). L2-gain analysis of systems with state and input delays. In Control Conference (ECC), 2015 European, pages 2062-2067. IEEE.
  10. Seiler, P. (2015). Stability analysis with dissipation inequalities and integral quadratic constraints. Automatic Control, IEEE Transactions on, 60(6):1704-1709.
  11. Swaroop, D. and Hedrick, J. K. (1999). Constant spacing strategies for platooning in automated highway systems. ASME Journal of Dynamic Systems, Measurement and Control, 121:462-470.
  12. Veenman, J. and Scherer, C. W. (2014). Iqc-synthesis with general dynamic multipliers. International Journal of Robust and Nonlinear Control, 24(17):3027-3056.
Download


Paper Citation


in Harvard Style

Szabó-Varga G. and Rödönyi G. (2016). Analysis of Input Delay Systems using Integral Quadratic Constraint . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 102-109. DOI: 10.5220/0005987101020109


in Bibtex Style

@conference{icinco16,
author={Gabriella Szabó-Varga and Gábor Rödönyi},
title={Analysis of Input Delay Systems using Integral Quadratic Constraint},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={102-109},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005987101020109},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Analysis of Input Delay Systems using Integral Quadratic Constraint
SN - 978-989-758-198-4
AU - Szabó-Varga G.
AU - Rödönyi G.
PY - 2016
SP - 102
EP - 109
DO - 10.5220/0005987101020109