Evaluation of Hip Kinematics Influence on the Performance of a Quadrupedal Robot Leg

Navvab Kashiri, Arash Ajoudani, Darwin G. Caldwell, Nikos G. Tsagarakis

Abstract

As a major inspiration of biologically inspired systems, multi-legged robots have been developed due to their superior stability feature resulting from their large support polygon. The leg design of a majority of such robots is motivated by the skeleton of vertebrates such as dogs, or that of invertebrates such as spiders. Despite a wide variety of multi-pedal robots on the basis of the two aforesaid leg designs, a thorough comparison of the two underlying design principles remains to be done. This work addresses this problem and presents a comparative study for the two mammal-like and spider-like designs by looking at the joint torque profile, the responsive motion of the legs, and the thrust force applied by the robot. To this end, a set of performance indexes are defined based on the gravity compensation torque, the dynamic manipulability polytope and the force polytope, and evaluated in various leg configurations of the two designs.

References

  1. Bagheri, M., Ajoudani, A., Lee, J., Caldwell, D. G., and Tsagarakis, N. G. (2015). Kinematic Analysis and Design Considerations for Optimal Base Frame Arrangement of Humanoid Shoulders. In IEEE Int. Conf. Robot. Autom., pages 2710-2715, Seattle.
  2. Belter, D., SkrzypczyÁski, P., Walas, K., and Wlodkowic, D. (2015). Affordable Multi-legged Robots for Research and STEM Education: A Case Study of Design and Technological Aspects. In Prog. Autom. Robot. Meas. Tech., pages 23-34. Springer.
  3. Caldwell, D. G., Tsagarakis, N., and Semini, C. (2014). Mechanism and Structures: Humanoids and Quadrupeds. In Bioinspired Approaches for Human-Centric Technologies, pages 133-153.
  4. Chen, J. J., Peattie, A. M., Autumn, K., and Full, R. J. (2006). Differential leg function in a sprawled-posture quadrupedal trotter. J. Exp. Biol., 209(2):249-259.
  5. Chen, X., Sun, Y., Huang, Q., Jia, W., and Pu, H. (2008). Development of Multi-Legged Walking Robot Using Reconfigurable Modular Design and Biomimetic Control Architecture. J. Syst. Des. Dyn., 2(1):401-412.
  6. Chiacchio, P., BouffardVercelli, Y., and Pierrot, F. (1997). Force polytope and force ellipsoid for redundant manipulators. J. Robot. Syst., 14(8):613-620.
  7. Corke, P. (2011). Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Science & Business Media.
  8. Gasparetto, A., Vidoni, R., and Seidl, T. (2008). Kinematic study of the spider system in a biomimetic perspective. In IEEE/RSJ Int. Conf. Intell. Robot. Syst., pages 3077-3082. IEEE.
  9. Ho, T., Choi, S., and Lee, S. (2007). Development of a biomimetic quadruped robot. J. Bionic Eng., 4(4):193-199.
  10. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., and Siegwart, R. (2012). StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In 15th Int. Conf. Climbing Walk. Robot. 2012, number EPFL-CONF-181042.
  11. Kang, T., Kim, H., Son, T., and Choi, H. (2003). Design of quadruped walking and climbing robot. In IEEE/RSJ Int. Conf. Intell. Robot. Syst., volume 1, pages 619-624. IEEE.
  12. Kar, D. C. (2003). Design of statically stable walking robot: a review. J. Robot. Syst., 20(11):671-686.
  13. Kashiri, N., Tsagarakis, N. G., Van Damme, M., Vanderborght, B., and Caldwell, D. G. (2014). Enhanced Physical Interaction Performance for Compliant Joint Manipulators using Proxy-based Sliding Mode Control. In Int. Conf. Informatics Control. Autom. Robot., pages 175-183, Vienna.
  14. Kato, K. and Hirose, S. (2001). Development of the quadruped walking robot, TITAN-IXmechanical design concept and application for the humanitarian de-mining robot. Adv. Robot., 15(2):191-204.
  15. Laffranchi, M., Chen, L., Kashiri, N., Lee, J., Tsagarakis, N. G., and Caldwell, D. G. (2014). Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots. Rob. Auton. Syst., 62(12):1827-1836.
  16. Negrello, F., Garabini, M., Catalano, M. G., Kryczka, P., Choi, W., Caldwell, D. G., Bicchi, A., and Tsagarakis, N. G. (2016). WALK-MAN Humanoid Lower body Design Optimization for Enhanced Physical Performance. In IEEE Int. Conf. Robot. Autom., Stockholm.
  17. Pratt, J. E. and Tedrake, R. (2006). Velocity-based stability margins for fast bipedal walking. In Fast Motions Biomech. Robot., pages 299-324. Springer.
  18. Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and Team, T. B. (2008). Bigdog, the rough-terrain quadruped robot. In Proc. 17th World Congr., volume 17, pages 10822-10825.
  19. Roennau, A., Heppner, G., Pfozter, L., and Dillman, R. (2013). Lauron V: Optimized leg configuration for the design of a bio-inspired walking robot. In Proc. 16th Int. Conf. Climbing Walk. Robot. Support Technol. Mob. Mach., volume 1417.
  20. Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., and Caldwell, D. G. (2011). Design of HyQa hydraulically and electrically actuated quadruped robot. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., page 0959651811402275.
  21. Seok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., and Kim, S. (2013). Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In IEEE Int. Conf. Robot. Autom., pages 3307-3312. IEEE.
  22. Shkolnik, A., Levashov, M., Manchester, I. R., and Tedrake, R. (2010). Bounding on rough terrain with the LittleDog robot. Int. J. Rob. Res., page 0278364910388315.
  23. Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). Robotics: Modelling, Planning and Control. Springer Science & Business Media.
  24. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., and Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Rob. Res., 32(8):932-950.
  25. Spyrakos-Papastavridis, E., Kashiri, N., Lee, J., Tsagarakis, N. G., and Caldwell, D. G. (2015). Online impedance parameter tuning for compliant biped balancing. In IEEE-RAS International Conference on Humanoid Robots, pages 210-216.
  26. Xie, H., Zhang, Z., Shang, J., and Luo, Z. (2014). Mechanical Design of A Modular Quadruped Robot-XDog. In Int. Conf. Mechatronics, Electron. Ind. Control Eng., pages 1074-1078.
  27. Yoshikawa, T. (1985). Dynamic manipulability of robot manipulators. In IEEE Int. Conf. Robot. Autom., volume 2, pages 1033-1038. IEEE.
  28. Zielinska, T. (2013). Design Issues and Robots Autonomy. In New Trends Mech. Mach. Sci., pages 691-699.
  29. Zielinska, T. and Heng, J. (2003). Mechanical design of multifunctional quadruped. Mech. Mach. Theory, 38(5):463-478.
Download


Paper Citation


in Harvard Style

Kashiri N., Ajoudani A., Caldwell D. and Tsagarakis N. (2016). Evaluation of Hip Kinematics Influence on the Performance of a Quadrupedal Robot Leg . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 205-212. DOI: 10.5220/0005986502050212


in Bibtex Style

@conference{icinco16,
author={Navvab Kashiri and Arash Ajoudani and Darwin G. Caldwell and Nikos G. Tsagarakis},
title={Evaluation of Hip Kinematics Influence on the Performance of a Quadrupedal Robot Leg},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={205-212},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005986502050212},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Evaluation of Hip Kinematics Influence on the Performance of a Quadrupedal Robot Leg
SN - 978-989-758-198-4
AU - Kashiri N.
AU - Ajoudani A.
AU - Caldwell D.
AU - Tsagarakis N.
PY - 2016
SP - 205
EP - 212
DO - 10.5220/0005986502050212