Pedestrian Trajectory Prediction in Large Infrastructures - A Long-term Approach based on Path Planning

Mario Garzón, David Garzón-Ramos, Antonio Barrientos, Jaime del Cerro

Abstract

This paper presents a pedestrian trajectory prediction technique. Its mail novelty is that it does not require any previous observation or knowledge of pedestrian trajectories, thus making it useful for autonomous surveillance applications. The prediction requires only a set of possible goals, a map of the scenario and the initial position of the pedestrian. Then, it uses two different path planing algorithms to find the possible routes and transforms the similarity between observed and planned routes into probabilities. Finally, it applies a motion model to obtain a time-stamped predicted trajectory. The system has been used in combination with a pedestrian detection and tracking system for real-world tests as well as a simulation software for a large number of executions.

References

  1. Alt, H. and Godau, M. (1995). Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5(01n02):75-91.
  2. Bennewitz, M., Burgard, W., Cielniak, G., and Thrun, S. (2005). Learning motion patterns of people for compliant robot motion. The International Journal of Robotics Research, 24(1):31-48.
  3. Bui, H. H., Venkatesh, S., and West, G. (2001). Tracking and surveillance in wide-area spatial environments using the abstract hidden markov model. International Journal of Pattern Recognition and Artificial Intelligence, 15(01):177-196.
  4. Foka, A. and Trahanias, P. (2010). Probabilistic autonomous robot navigation in dynamic environments with human motion prediction. International Journal of Social Robotics, 2(1):79-94.
  5. Fréchet, M. M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884-1940), 22(1):1-72.
  6. Garzón, M. A., Barrientos, A., Cerro, J. D., Alacid, A., Fotiadis, E., Rodríguez-Canosa, G. R., and Wang, B.-C. (2015). Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures. Industrial Robot: An International Journal, 42(5):429-440.
  7. Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., and Kanda, T. (2012). Modeling and prediction of pedestrian behavior based on the sub-goal concept. In Proceedings of Robotics: Science and Systems, Sydney, Australia.
  8. Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert, M. (2012). Computer Vision - ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part IV, chapter Activity Forecasting, pages 201-214. Springer Berlin Heidelberg, Berlin, Heidelberg.
  9. Kitazawa, K. and Batty, M. (2004). Pedestrian behaviour modelling. In Developments in Design and Decision Support Systems in Architecture and Urban Planning, pages 111-126.
  10. Sethian, J. A. (1999). Fast marching methods. SIAM Review, 41(2):199-235.
  11. Tamura, Y., Terada, Y., Yamashita, A., and Asama, H. (2013). Modelling behaviour patterns of pedestrians for mobile robot trajectory generation. International Journal of Advanced Robotic Systems, 10(301):1-11.
  12. Yen, H. C., Huang, H. P., and Chung, S. Y. (2008). Goaldirected pedestrian model for long-term motion prediction with application to robot motion planning. In Advanced robotics and Its Social Impacts, 2008. ARSO 2008. IEEE Workshop on, pages 1-6.
  13. Ziebart, B., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J., Hebert, M., Dey, A., and Srinivasa, S. (2009). Planning-based prediction for pedestrians. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3931- 3936.
Download


Paper Citation


in Harvard Style

Garzón M., Garzón-Ramos D., Barrientos A. and Cerro J. (2016). Pedestrian Trajectory Prediction in Large Infrastructures - A Long-term Approach based on Path Planning . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 381-389. DOI: 10.5220/0005983303810389


in Bibtex Style

@conference{icinco16,
author={Mario Garzón and David Garzón-Ramos and Antonio Barrientos and Jaime del Cerro},
title={Pedestrian Trajectory Prediction in Large Infrastructures - A Long-term Approach based on Path Planning},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={381-389},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005983303810389},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Pedestrian Trajectory Prediction in Large Infrastructures - A Long-term Approach based on Path Planning
SN - 978-989-758-198-4
AU - Garzón M.
AU - Garzón-Ramos D.
AU - Barrientos A.
AU - Cerro J.
PY - 2016
SP - 381
EP - 389
DO - 10.5220/0005983303810389