Model based Detection and 3D Localization of Planar Objects for Industrial Setups

Basak Sakcak, Luca Bascetta, Gianni Ferretti

Abstract

In this work we present a method to detect and estimate the three-dimensional pose of planar and textureless objects placed randomly on a conveyor belt or inside a bin. The method is based on analysis of single 2D images acquired by a standard camera. The algorithm exploits a template matching method to recognize the objects. A set of pose hypotheses are then refined and, based on a gradient orientation scoring, the best object to be manipulated is selected. The method is flexible and can be used with different objects without changing parameters since it exploits a CAD model as input for template generation. We validated the method using synthetic images. An experimental setup has been also designed using a fixed standard camera to localize planar metal objects in various scenarios.

References

  1. Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. (1977). Parametric correspondence and chamfer matching: two new techniques for image matching. In Proceedings of the 5th international joint conference on Artificial intelligence-Volume 2, pages 659-663. Morgan Kaufmann Publishers Inc.
  2. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
  3. Choi, C., Taguchi, Y., Tuzel, O., Liu, M.-Y., and Ramalingam, S. (2012). Voting-based pose estimation for robotic assembly using a 3d sensor. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1724-1731. IEEE.
  4. Cózar, J. R., Guil, N., and Zapata, E. L. (2001). Detection of arbitrary planar shapes with 3d pose. Image and Vision Computing, 19(14):1057-1070.
  5. Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally: Efficient and robust 3d object recognition. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
  6. Felzenszwalb, P. and Huttenlocher, D. (2004). Distance transforms of sampled functions. Technical report, Cornell University.
  7. Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., and Lepetit, V. (2012). Gradient response maps for real-time detection of textureless objects. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):876-888.
  8. Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T. K., and Chellappa, R. (2012). Fast object localization and pose estimation in heavy clutter for robotic bin picking. The International Journal of Robotics Research, 31(8):951-973.
  9. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  10. Papazov, C., Haddadin, S., Parusel, S., Krieger, K., and Burschka, D. (2012). Rigid 3d geometry matching for grasping of known objects in cluttered scenes. The International Journal of Robotics Research, page 0278364911436019.
  11. Pretto, A., Tonello, S., and Menegatti, E. (2013). Flexible 3d localization of planar objects for industrial binpicking with monocamera vision system. In Automation Science and Engineering (CASE), 2013 IEEE International Conference on, pages 168-175. IEEE.
  12. Schnabel, R., Wessel, R., Wahl, R., and Klein, R. (2008). Shape recognition in 3d point-clouds. In The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, volume 8. Citeseer.
  13. Shotton, J., Blake, A., and Cipolla, R. (2008). Multiscale categorical object recognition using contour fragments. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(7):1270-1281.
  14. Skotheim, Ø., Lind, M., Ystgaard, P., and Fjerdingen, S. A. (2012). A flexible 3d object localization system for industrial part handling. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 3326-3333. IEEE.
  15. Söderberg, R., Nordberg, K., and Granlund, G. (2005). An invariant and compact representation for unrestricted pose estimation. In Pattern Recognition and Image Analysis, pages 3-10. Springer.
  16. Steger, C. (2002). Occlusion, clutter, and illumination invariant object recognition. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A):345-350.
  17. Ulrich, M., Wiedemann, C., and Steger, C. (2009). Cadbased recognition of 3d objects in monocular images. In ICRA, volume 9, pages 1191-1198.
  18. von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall, G. (2008). Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):722-732.
  19. Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2):119-152.
Download


Paper Citation


in Harvard Style

Sakcak B., Bascetta L. and Ferretti G. (2016). Model based Detection and 3D Localization of Planar Objects for Industrial Setups . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 360-367. DOI: 10.5220/0005982503600367


in Bibtex Style

@conference{icinco16,
author={Basak Sakcak and Luca Bascetta and Gianni Ferretti},
title={Model based Detection and 3D Localization of Planar Objects for Industrial Setups},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={360-367},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005982503600367},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Model based Detection and 3D Localization of Planar Objects for Industrial Setups
SN - 978-989-758-198-4
AU - Sakcak B.
AU - Bascetta L.
AU - Ferretti G.
PY - 2016
SP - 360
EP - 367
DO - 10.5220/0005982503600367