Coverage Range Analysis of Wireless Technologies for Industrial Automation - System Overview and Performance Evaluation

Armin Wulf, Lisa Underberg, Rüdiger Kays

Abstract

Reliable wireless communication is crucial to current and future industrial applications, but is however not yet applicable in many scenarios. Thus novel approaches are being investigated at the moment, from which three physical (PHY) layer technologies are depicted for detailed evaluation in this paper. Preceding the performance analysis, industrial application requirements and constraints as spatial extent, number of nodes, cycle time, PER and user data length are summarized. Error rates and coverage ranges are calculated and presented for Ultra Wide Band (UWB), Frequency Hopping Spread Spectrum (FHSS) and Parallel Sequence Spread Spectrum (PSSS) assuming an AWGN channel.

References

  1. Aust, S., Prasad, R. V., and Niemegeers, I. G. M. M. (2015). Outdoor Long-Range WLANs: A Lesson for IEEE 802.11ah. IEEE Communications Surveys & Tutorials, 17(3):1761-1775.
  2. Cartier, D. E. (1977). Limiter-Discriminator Detection Performance of Manchester and NRZ Coded FSK. IEEE Transactions on Aerospace and Electronic Systems, AES-13(1):62-70.
  3. ETSI (2010). EN 300 440-1 V1.6.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Short range devices; Radio equipment to be used in the 1 GHz to 40 GHz frequency range; Part 1: Technical characteristics and test methods.
  4. ETSI (2011). TR 102 889-2 V1.1.1. Technical report, European Telecommunications Standards Institute.
  5. ETSI (2013). EN 302 065-1 V1.3.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD) using Ultra Wide Band technology (UWB) for communications purposes; Harmonized EN covering the essential requirements of article 3.2 of the R&TT directive; part 1: Common technical requirements.
  6. FCC (2016). CFR Title 47: Telecommunication, Part 15, Subpart C - Intentional Radiators.
  7. Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., and Klessig, H. (2014). Requirements and current solutions of wireless communication in industrial automation. In Communications Workshops (ICC), 2014 IEEE International Conference on, pages 67-72.
  8. Ge, L., Yue, G., and Affes, S. (2002). On the BER performance of pulse-position-modulation UWB radio in multipath channels. 2002 IEEE Conference on Ultra Wideband Systems and Technologies, UWBST 2002 - Digest of Papers, (1):231-234.
  9. Güngör, V. Çag?ri; Hancke, G. P. (2013). Industrial Wireless Sensor Networks: Applications, Protocols and Standards. CRC Press.
  10. IEC (2010). 62591 Ed. 1.0: Industrial communication networks - Wireless communication network and communication profiles - WirelessHART.
  11. IEEE (2005). IEEE Std 802.15.1-2005, IEEE Standard for Information technolog - Local and metropolitan area networks - Specific requirements - Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPA.
  12. IEEE (2011). IEEE Std 802.15.4-2011, IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate Wireless Personal Area Networks.
  13. KrishneGowda, K., Messinger, T., Wolf, A. C., Kraemer, R., Kallfass, I., and Scheytt, J. C. (2015). Towards 100 Gbps Wireless Communication in THz Band with PSSS Modulation: A Promising Hardware in the Loop Experiment. In Ubiquitous Wireless Broadband (ICUWB), 2015 IEEE International Conference on, pages 1-5.
  14. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C.- c., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U., and Siwiak, K. (2004). IEEE 802.15.4a Channel Model - Final Report. IEEE P802, 15(04):1-40.
  15. Pawula, R. F. (1988). Refinements to the Theory of Error Rates for Narrow-Band Digital FM. IEEE Transactions on Communications, 36(4):509-513.
  16. Pawula, R. F. (2001). Distribution of the phase angle between two vectors perturbed by Gaussian noise II. IEEE Transactions on Vehicular Technology, 50(2):576-583.
  17. PNO (2012). WSAN Air Interface Specification Technical Specification, Version 1.0.
  18. Proakis, J. G. and Salehi, M. (2008). Digital Communications. McGraw-Hill, New York, 5th ed. edition.
  19. Reinhold, R. (2016). Concepts for Reliable and Timecritical Industrial Communication Based on IR-UWB Systems. Dortmunder Beiträge zur Kommunikationstechnik, Prof. Dr.-Ing. Rüdiger Kays, Dortmund.
  20. Reinhold, R., Schaefer, F., and Kays, R. (2013). Performance Evaluation of an Enhanced Frequency Hopping Transceiver in 5 GHz Band for Wireless Sensor Networks. The Tenth International Symposium on Wireless Communication Systems 2013, pages 823-827.
  21. Schwetlick, H. and Wolf, A. (2004). PSSS - Parallel Sequence Spread Spectrum a Physical Layer for RF Communication. In Consumer Electronics, 2004 IEEE International Symposium on, pages 262-265.
  22. Simon, M. K. and Wang, C. C. (1983). Differential Versus Limiter-Discriminator Detection of Narrow-Band FM. IEEE Trans. on Communications, 31(11):1227- 1234.
  23. VDI/VDE (2007). VDI/VDE Guideline 2185: Radio Based Communication in Industrial Automation.
  24. Wolf, A. (2004). Verfahren zum Übertragen eines Datenworts, Document DE 103 01 250 A1.
  25. ZigBee Alliance (2012). ZigBee Specification, Document 053474r20.
  26. ZVEI (2009). Coexistence of Wireless Systems in Automation Technology - Explanations on reliable parallel operation of wireless radio solutions. Technical report, ZVEI - German Electrical and Electronics Manufacturers' Association, Automation Division.
Download


Paper Citation


in Harvard Style

Wulf A., Underberg L. and Kays R. (2016). Coverage Range Analysis of Wireless Technologies for Industrial Automation - System Overview and Performance Evaluation . In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 6: WINSYS, (ICETE 2016) ISBN 978-989-758-196-0, pages 74-83. DOI: 10.5220/0005971600740083


in Bibtex Style

@conference{winsys16,
author={Armin Wulf and Lisa Underberg and Rüdiger Kays},
title={Coverage Range Analysis of Wireless Technologies for Industrial Automation - System Overview and Performance Evaluation},
booktitle={Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 6: WINSYS, (ICETE 2016)},
year={2016},
pages={74-83},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005971600740083},
isbn={978-989-758-196-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 6: WINSYS, (ICETE 2016)
TI - Coverage Range Analysis of Wireless Technologies for Industrial Automation - System Overview and Performance Evaluation
SN - 978-989-758-196-0
AU - Wulf A.
AU - Underberg L.
AU - Kays R.
PY - 2016
SP - 74
EP - 83
DO - 10.5220/0005971600740083