A Particle Filter based Multi-person Tracking with Occlusion Handling

Ruixing Yu, Bing Zhu, Wenfeng Li, Xianglong Kong

Abstract

A multi-person tracking method is proposed concerning how to conquer the difficulties such as occlusion and changes in appearance which makes algorithm hard to get the correct positions of object. First, we indicate whether the target is blocked or not, through computing the Reliability of Tracklets (RT) based on the length of tracklets, appearance affinity and the size. Then, we propose a “correct” observation sample selection method and only update the weights of particle filter when the RT is high. Last, the greedy bipartite algorithm is used to realize data association. Experiments show that tracking can be successfully achieved even under severe occlusion.

References

  1. Yang, B. & Nevatia, R. An Online Learned Crf Model For Multi-Target Tracking. In Cvpr, 2012. 2034-2041.
  2. Felzenszwalb, P. F., Girshick, R. B., Mcallester, D. & Ramanan, D. 2014. Object Detection With Discriminatively Trained Part-Based Models. Ieee Transactions On Pattern Analysis & Machine Intelligence 32, 6-7.
  3. Dollar, P., Wojek, C., Schiele, B. & Perona, P. 2012. Pedestrian Detection: An Evaluation Of The State Of The Art. Pattern Analysis & Machine Intelligence Ieee Transactions On, 34, 743-761.
  4. Doll R, P., Belongie, S. & Perona, P. 2010. The Fastest Pedestrian Detector In The West. Bmvc, 1-11.
  5. Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E. & Van Gool, L. 2011. Online Multiperson Tracking-By-Detection From A Single, Uncalibrated Camera. Ieee Transactions On Pattern Analysis & Machine Intelligence, 33, 1820-1833.
  6. Brendel, W., Amer, M. & Todorovic, S. Multiobject Tracking As Maximum Weight Independent Set. Computer Vision And Pattern Recognition (Cvpr), 2011 Ieee Conference On, 2011. 1273-1280.
  7. Pellegrini, S., Ess, A. & Gool, L. V. 2010. Improving Data Association By Joint Modeling Of Pedestrian Trajectories And Groupings. Lecture Notes In Computer Science, 6311, 452-465.
  8. Bar-Shalom, Y., Daum, F. & Huang, J. 2010. The Probabilistic Data Association Filter. Ieee Control Systems, 29, 82-100.
  9. Fortmann, T. E., Bar-Shalom, Y. & Scheffe, M. 1983. Sonar Tracking Of Multiple Targets Using Joint Probabilistic Data Association. Oceanic Engineering Ieee Journal Of, 8, 173-184.
  10. Pirsiavash, H., Ramanan, D. & Fowlkes, C. C. GloballyOptimal Greedy Algorithms For Tracking A Variable Number Of Objects. Proceedings Of The 2011 Ieee Conference On Computer Vision And Pattern Recognition, 2011. 1201-1208.
  11. H., W. 1955. The Hungarian Method For The Assignment Problem. Naval Research Logistics Quarterly, 2, 83-97.
  12. Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E. & Van Gool, L. Robust Tracking-By-Detection Using A Detector Confidence Particle Filter. Computer Vision, 2009 Ieee 12th International Conference On, 2009. 1515-1522.
  13. Xing, J., Ai, H. & Lao, S. Multi-Object Tracking Through Occlusions By Local Tracklets Filtering And Global Tracklets Association With Detection Responses. Ieee Conference On Computer Vision & Pattern Recognition, 2009. 1200-1207.
  14. Li, Y., Ai, H., Yamashita, T., Lao, S. & Kawade, M. 2008. Tracking In Low Frame Rate Video: A Cascade Particle Filter With Discriminative Observers Of Different Life Spans. Ieee Trans Pattern Anal Mach Intell. Ieee Transactions On Pattern Analysis & Machine Intelligence, 30.
  15. Grabner, H., Bischof, H. & Grabner, M. 2006. Real-Time Tracking Via On-Line Boosting. Bmvc, 47-56.
  16. Collins, R. T., Liu, Y. & Leordeanu, M. 2005. Online Selection Of Discriminative Tracking Features. Ieee Transactions On Pattern Analysis & Machine Intelligence 27, 1631-1643.
  17. Babenko, B., Yang, M. H. & Belongie, S. 2009. Visual Tracking With Online Multiple Instance Learning. Ieee Trans Pattern Anal Mach Intell, 983-990.
  18. Kalal, Z., Matas, J. & Mikolajczyk, K. P-N Learning: Bootstrapping Binary Classifiers By Structural Constraints. Proceedings / Cvpr, Ieee Computer Society Conference On Computer Vision And Pattern Recognition. Ieee Computer Society Conference On Computer Vision And Pattern Recognition, 2010. 49-56.
  19. Wu, B. & Nevatia, R. Detection Of Multiple, Partially Occluded Humans In A Single Image By Bayesian Combination Of Edgelet Part Detectors. Computer Vision, 2005. Iccv 2005. Tenth Ieee International Conference On, 2005. 90-97.
  20. Song, X., Cui, J., Zha, H. & Zhao, H. 2008. Vision-Based Multiple Interacting Targets Tracking Via On-Line Supervised Learning, Springer Berlin Heidelberg.
  21. Dalal, N. & Triggs, B. Histograms Of Oriented Gradients For Human Detection. Computer Vision And Pattern Recognition, 2005. Cvpr 2005. Ieee Computer Society Conference On, 2005. 886-893 Vol. 1.
  22. Birnbaum, B. & Mathieu, C. 2008. On-Line Bipartite Matching Made Simple. Acm Sigact News, 39, 80-87.
  23. Bing, W., Gang, W., Kap Luk, C. & Li, W. Tracklet Association With Online Target-Specific Metric Learning. Computer Vision And Pattern Recognition (Cvpr), 2014 Ieee Conference On, 23-28 June 2014 2014. 1234-1241.
  24. Kuo, C. H. & Nevatia, R. How Does Person Identity Recognition Help Multi-Person Tracking? Proceedings /Cvpr, Ieee Computer Society Conference On Computer Vision And Pattern Recognition. Ieee Computer Society Conference On Computer Vision And Pattern Recognition, 2011. 1217-1224.
Download


Paper Citation


in Harvard Style

Yu R., Zhu B., Li W. and Kong X. (2016). A Particle Filter based Multi-person Tracking with Occlusion Handling . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 201-207. DOI: 10.5220/0005961602010207


in Bibtex Style

@conference{icinco16,
author={Ruixing Yu and Bing Zhu and Wenfeng Li and Xianglong Kong},
title={A Particle Filter based Multi-person Tracking with Occlusion Handling},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={201-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005961602010207},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A Particle Filter based Multi-person Tracking with Occlusion Handling
SN - 978-989-758-198-4
AU - Yu R.
AU - Zhu B.
AU - Li W.
AU - Kong X.
PY - 2016
SP - 201
EP - 207
DO - 10.5220/0005961602010207