Development of a Simulink Dynamic Matrix Control (DMC) Block for Use with an RCP System and Its Application to Motor Control

Young Sam Lee, Jinsuk Choi, Sugkil Seo, Yeong Sang Park

Abstract

In this paper, we present the implementation method of a Simulink block for dynamic matrix control (DMC) that can be used in a rapid control prototyping (RCP) environment and consider the speed control of a DC motor using the developed DMC block. Firstly, we introduce a lab-built RCP system briefly. Secondly, we present a method to implement the DMC block using C-language, which enables DMC algorithm to be represented in a library block that can be used in Simulink environment. Finally, we use the developed DMC block for the speed control of a DC motor, through which we show that the DMC-based control system can be easily implemented and it can be applied to real-time control of systems with relatively fast sample rates.

References

  1. Bucher, R. and Balemi, S. (2006). Rapid controller prototyping with Matlab/Simulink and Linux. Control Engineering Practice, 14:185-192.
  2. Clarke, D. W., Mohtadi, C., and Tuffs, P. S. (1987a). Generalized predictive control-Part I. The basic algorithm. Automatica, 23(2):137-148.
  3. Clarke, D. W., Mohtadi, C., and Tuffs, P. S. (1987b). Generalized predictive control-Part II. Extensions and interpretations. Automatica, 23(2):149-160.
  4. Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M. (2014). qpOASES: a parametric active-set algorithm for quadratic programming. Math. Prog. Comp., 6:327-363.
  5. Garcia, C. E. and Morshedi, A. M. (1986). Quadratic programming solution of dynamic matrix control (QDMC). Chem. Eng. Commun., 46:73-87.
  6. Hercog, D. and Jezernik, K. (2005). Rapid control prototyping using Matlab/Simulink and a DSP-based motor controller. Int. J. Engng Ed., 21(3):1-9.
  7. Hong, K. H., Gan, W. S., Chong, Y. K., Chew, K. K., Lee, C. M., and Koh, T. Y. (2000). An integrated environment for rapid prototyping of DSP algorithms using and Texas Instruments' TMS320C30 . Microprocessors and Microsystems, 24(7):349-363.
  8. Inc., T. M. (2005a). Real-time workshop embedded code user's guide (ecoder ug.pdf), Version 4.
  9. Inc., T. M. (2005b). Real-time workshop user's guide (rtw ug.pdf), Version 6.
  10. Kennel, R. (2006). Improved direct torque control for induction motor drives with rapid prototyping system. Energy Conversion and Management, 47:1999-2010.
  11. Lawson, C. L. and Hanson, R. J. (1974). Solving least squares problems. Prentice-Hall, Englewood Cliffs, New Jersey.
  12. Lee, J. H., Morari, M., and Garcia, C. E. (1994). State-space interpretation of model predictive control. Automatica, 30(4):707-717.
  13. Lee, W., Shin, M., and Sunwoo, M. (2004). Target-identical rapid control prototyping platform for model-based engine control. Proc. Instn Mech. Engrs Part D, J. Automobile Engineering, 218:755-765.
  14. Lee, Y. S., Gyeong, G. Y., and Park, J. H. (2014). QP Solution for the implementation of the predictive control on microcontroller systems and its application method. Journal of Institute of Control, Robotics, and Systems (in Korean), 20(9):908-913.
  15. Lee, Y. S., Yang, J. H., Kim, S. Y., Kim, W. S., and Kwon, O. K. (2012). Development of a rapid control prototpying system based on Matlab and USB DAQ boards. Journal of Institute of Control, Robotics, and Systems (in Korean), 18(10):912-920.
  16. Lin, C. F., Tseng, C. Y., and Tseng, T. W. (2006). A hardware-in-the-loop dynamics simulator for motorcycle rapid controller prototyping. Control Engineerning Practice, 14:1467-1476.
  17. Lundstrom, P., Lee, J. H., Morari, M., and Skogestad, S. (1995). Limitations of dynamic matrix control. Computers Chemical Engineering, 19(4):409-421.
  18. Rebeschie├č, S. MIRCOS-Microcontroller-based real time control system toolbox for use with Matlab/Simulink. In Proc. IEEE Int. Symp. Computer Aided Control System Design, pages 267-272, 1999.
Download


Paper Citation


in Harvard Style

Lee Y., Choi J., Seo S. and Park Y. (2016). Development of a Simulink Dynamic Matrix Control (DMC) Block for Use with an RCP System and Its Application to Motor Control . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 413-420. DOI: 10.5220/0005958004130420


in Bibtex Style

@conference{icinco16,
author={Young Sam Lee and Jinsuk Choi and Sugkil Seo and Yeong Sang Park},
title={Development of a Simulink Dynamic Matrix Control (DMC) Block for Use with an RCP System and Its Application to Motor Control},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={413-420},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005958004130420},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Development of a Simulink Dynamic Matrix Control (DMC) Block for Use with an RCP System and Its Application to Motor Control
SN - 978-989-758-198-4
AU - Lee Y.
AU - Choi J.
AU - Seo S.
AU - Park Y.
PY - 2016
SP - 413
EP - 420
DO - 10.5220/0005958004130420