Adaptive Forward-Reverse Filter using Interpolation Methods for Artifact Suppression in Retinal Prostheses

Myounghwan Choi, Jeong-Yeol Ahn, Dae-Jin Park, Yujin Jeong, Sangyeol Lee, Sanghyub Lee, Dong-il Cho, Yong-Sook Goo, Kyo-in Koo

Abstract

Electrical stimulation on retinal ganglion cells (RGCs) induce the short-latency (directly-evoked) and long-latency (indirectly-evoked) responses of RGCs. The artifact suppression and isolation of direct RGC spike is required for proper analysis of visual information. Adaptive forward-reverse filter (FR filter) using interpolation method is proposed and evaluated. On selected over 1.6 ms waves, which is suspected as artifact, 2 new data points are linearly interpolated between the recorded data points. After that, the interpolated data are filtered by frequency-based FR filter (500 Hz). The proposed algorithm shows the best true positive rate (0.7629) comparing with the SALPA and the simple FR filter without the interpolation method. In point of view of the false positive rate, the proposed algorithm demonstrates the second-best performance (0.0047), not better than the SALPA (0.0006).

References

  1. Boinagrov, David, Susanne Pangratz-Fuehrer, Georges Goetz and Daniel Palanker. 2014. Selectivity of Direct and Network-Mediated Stimulation of the Retinal Ganglion Cells with Epi-, Sub-and Intraretinal Electrodes. Journal of Neural Engineering 11:026008.
  2. Choi, MH, Ahn, JY, Oh, SJ, et al. 2015. Comparison of the Three Filter Algorithms for Detection of ElectricallyEvoked Short-Latency Responses in Retinal Ganglion Cells. Paper presented at World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada. .
  3. Fawcett, Tom. 2006. An Introduction to ROC Analysis. Pattern Recognition Letters 27:861-74.
  4. Fried, SI, Hain-Ann Hsueh and FS Werblin. 2005. A Method for Generating Precise Temporal Patterns of Retinal Spiking using Prosthetic Devices. Journal of Vision 5:4-.
  5. Gustafsson, Fredrik. 1994. Determining the Initial States in Forward-Backward Filtering. .
  6. Humayun, Mark S., James D. Weiland, Gildo Y. Fujii, et al. 2003. Visual Perception in a Blind Subject with a Chronic Microelectronic Retinal Prosthesis. Vision Research 43:2573-81.
  7. Jensen, Ralph J. and Joseph F. Rizzo III. 2007. Responses of Ganglion Cells to Repetitive Electrical Stimulation of the Retina. Journal of Neural Engineering 4:S1.
  8. Jensen, Ralph J. and Joseph F. Rizzo. 2008. Activation of Retinal Ganglion Cells in Wild-Type and Rd1 Mice through Electrical Stimulation of the Retinal Neural Network. Vision Research 48:1562-8.
  9. Jin, Gye H., Tae S. Lee and Yong S. Goo. 2005. Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array. Korean Journal of Medical Physics 16:148-54.
  10. Lee, H., J. Lee, W. Jung and Gun-Ki Lee. 2007. The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals. International Journal of Control Automation and Systems 5:701.
  11. Li, Liming, Yuki Hayashida and Tetsuya Yagi. 2005. Temporal Properties of Retinal Ganglion Cell Responses to Local Transretinal Current Stimuli in the Frog Retina. Vision Research 45:263-73.
  12. Rao, Cheng, Xiang-Hui Yuan, Si-Jie Zhang, Qiu-Lin Wang and You-Shu Huang. 2008. Epiretinal Prosthesis Forouter Retinal Degenerative Diseases. International Journal of Ophthalmology 1:273-6.
  13. Ryu, Sang B., Jang H. Ye, Jong S. Lee, Yong S. Goo, Chi H. Kim and Kyung H. Kim. 2009a. Electrically-Evoked Neural Activities of Rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation. The Korean Journal of Physiology & Pharmacology 13:443-8.
  14. Ryu, Sang B., Jang H. Ye, Jong S. Lee, Yong S. Goo and Kyung H. Kim. 2009b. Characterization of Retinal Ganglion Cell Activities Evoked by Temporally Patterned Electrical Stimulation for the Development of Stimulus Encoding Strategies for Retinal Implants. Brain research 1275:33-42.
  15. Sekirnjak, C., P. Hottowy, A. Sher, W. Dabrowski, A. M. Litke and E. J. Chichilnisky. 2006. Electrical Stimulation of Mammalian Retinal Ganglion Cells with Multielectrode Arrays. Journal of neurophysiology 95:3311-27.
  16. Stett, Alfred, Wolfgang Barth, Stefan Weiss, Hugo Haemmerle and Eberhart Zrenner. 2000. Electrical Multisite Stimulation of the Isolated Chicken Retina. Vision Research 40:1785-95.
  17. Wagenaar, Daniel A. and Steve M. Potter. 2002. Real-Time Multi-Channel Stimulus Artifact Suppression by Local Curve Fitting. Journal of Neuroscience Methods 120:113-20.
Download


Paper Citation


in Harvard Style

Choi M., Ahn J., Park D., Jeong Y., Lee S., Lee S., Cho D., Goo Y. and Koo K. (2016). Adaptive Forward-Reverse Filter using Interpolation Methods for Artifact Suppression in Retinal Prostheses . In - SPCS, (PECCS 2016) ISBN , pages 0-0. DOI: 10.5220/0005944001050109


in Bibtex Style

@conference{spcs16,
author={Myounghwan Choi and Jeong-Yeol Ahn and Dae-Jin Park and Yujin Jeong and Sangyeol Lee and Sanghyub Lee and Dong-il Cho and Yong-Sook Goo and Kyo-in Koo},
title={Adaptive Forward-Reverse Filter using Interpolation Methods for Artifact Suppression in Retinal Prostheses},
booktitle={ - SPCS, (PECCS 2016)},
year={2016},
pages={},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005944001050109},
isbn={},
}


in EndNote Style

TY - CONF
JO - - SPCS, (PECCS 2016)
TI - Adaptive Forward-Reverse Filter using Interpolation Methods for Artifact Suppression in Retinal Prostheses
SN -
AU - Choi M.
AU - Ahn J.
AU - Park D.
AU - Jeong Y.
AU - Lee S.
AU - Lee S.
AU - Cho D.
AU - Goo Y.
AU - Koo K.
PY - 2016
SP - 0
EP - 0
DO - 10.5220/0005944001050109