Combining Harvesting Operation Optimisations using Strategy-based Simulation

Luis Diogo Couto, Peter W. V. Tran-Jørgensen, Gareth T. C. Edwards

Abstract

Modelling and simulation assist in decision support or planning activities by allowing efficient exploration of multiple scenarios in a situation where testing in a real setting is impractical. This exploration is often done by varying numerical parameters in the model such as physical dimensions or speed in order to find the optimal configuration. However, for certain problems, in order to find optimal solutions it is beneficial to vary the algorithms that are used to implement the behaviour of the model. For example, when calculating optimised routes for harvesters and other vehicles in a harvest operation, the choice of optimisation algorithms is an important part of the problem. Traditional modelling and simulation techniques do not allow us to vary algorithms across simulations effectively. In this paper, we address this issue by applying the strategy pattern from software engineering to the construction of a formal model that enables different combinations of harvest optimisation algorithms to be analysed effectively. This approach can be generalised to other planning activities where multiple algorithms need to be considered.

References

  1. Bochtis, D. and Sørensen, C. (2009). The vehicle routing problem in field logistics part i. Biosystems Engineering, 104(4):447-457.
  2. Broenink, J. F., Fitzgerald, J., Gamble, C., Ingram, C., Mader, A., Marincic, J., Ni, Y., Pierce, K., and Zhang, X. (2012). Methodological guidelines 3. Technical report, The DESTECS Project (INFSO-ICT-248134).
  3. Edwards, G., Christiansen, M. P., Bochtis, D. D., and Sørensen, C. G. (2013). A test platform for planned field operations using lego mindstorms nxt. Robotics, 2(4):203-216.
  4. Edwards, G., Jensen, M. A. F., and Bochtis, D. D. (2015). Coverage planning for capacitated field operations under spatial variability. International Journal of Sustainable Agricultural Management and Informatics, 1(2):120-129.
  5. Fitzgerald, J., Larsen, P. G., Mukherjee, P., Plat, N., and Verhoef, M. (2005). Validated Designs for Objectoriented Systems. Springer, New York.
  6. Fitzgerald, J., Larsen, P. G., and Verhoef, M., editors (2014). Collaborative Design for Embedded Systems - Co-modelling and Co-simulation . Springer.
  7. Gamma, E., Helm, R., Johnson, R., and Vlissides, R. (1995). Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley Publishing Company.
  8. Hameed, I., Bochtis, D., Sørensen, C., Jensen, A. L., and Larsen, R. (2013). Optimized driving direction based on a three-dimensional field representation. Computers and electronics in agriculture, 91:145-153.
  9. Jensen, M. A. F. (2014). Operations planning for agricultural machinery under capacity constraints. PhD thesis, Aarhus University.
  10. Jensen, M. A. F., Bochtis, D., Sørensen, C. G., Blas, M. R., and Lykkegaard, K. L. (2012). In-field and inter-field path planning for agricultural transport units. Computers & Industrial Engineering, 63(4):1054-1061.
  11. Jin, J. and Tang, L. (2010). Optimal coverage path planning for arable farming on 2d surfaces. Transactions of the ASABE, 53(1):283.
  12. Larsen, P. G., Lausdahl, K., and Battle, N. (2010). Combinatorial Testing for VDM. In Proceedings of the 2010 8th IEEE International Conference on Software Engineering and Formal Methods, SEFM 7810, pages 278- 285, Washington, DC, USA. IEEE Computer Society. ISBN 978-0-7695-4153-2.
  13. Meyer, B. (1988). Object-oriented Software Construction. Prentice-Hall International.
  14. Nielsen, C. B., Lausdahl, K., and Larsen, P. G. (2012). Combining VDM with Executable Code. In Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., and Riccobene, E., editors, Abstract State Machines, Alloy, B, VDM, and Z, volume 7316 of Lecture Notes in Computer Science, pages 266- 279, Berlin, Heidelberg. Springer-Verlag.
  15. Oksanen, T. and Visala, A. (2009). Coverage path planning algorithms for agricultural field machines. Journal of Field Robotics, 26(8):651-668.
  16. Scheuren, S., Stiene, S., Hartanto, R., Hertzberg, J., and Reinecke, M. (2013). Spatio-temporally constrained planning for cooperative vehicles in a harvesting scenario. KI-Künstliche Intelligenz, 27(4):341-346.
  17. Spekken, M. and de Bruin, S. (2013). Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precision agriculture, 14(2):224-244.
  18. Tullberg, J. (2010). Tillage, traffic and sustainabilitya challenge for istro. Soil and Tillage Research, 111(1):26- 32.
  19. Verhoef, M. (2009). Modeling and Validating Distributed Embedded Real-Time Control Systems. PhD thesis, Radboud University Nijmegen.
  20. Zandonadi, R. S. (2012). Computational Tools for Improving Route Planning in Agricultural Field Operations. PhD thesis, University of Kentucky.
Download


Paper Citation


in Harvard Style

Couto L., Tran-Jørgensen P. and Edwards G. (2016). Combining Harvesting Operation Optimisations using Strategy-based Simulation . In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-199-1, pages 25-32. DOI: 10.5220/0005932900250032


in Bibtex Style

@conference{simultech16,
author={Luis Diogo Couto and Peter W. V. Tran-Jørgensen and Gareth T. C. Edwards},
title={Combining Harvesting Operation Optimisations using Strategy-based Simulation},
booktitle={Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2016},
pages={25-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005932900250032},
isbn={978-989-758-199-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Combining Harvesting Operation Optimisations using Strategy-based Simulation
SN - 978-989-758-199-1
AU - Couto L.
AU - Tran-Jørgensen P.
AU - Edwards G.
PY - 2016
SP - 25
EP - 32
DO - 10.5220/0005932900250032