Multiple Matrix Rank Constrained Optimization for Optimal Power Flow over Large Scale Transmission Networks

Y. Shi, H. D. Tuan, S. W. Su, A. V. Savkin

Abstract

The optimal power flow (OPF) problem for power transmission networks is an NP-hard optimization problem with numerous quadratic equality and indefinite quadratic inequality constraints on bus voltages. The existing nonlinear solvers often fail in yielding a feasible solution. In this paper, we follow our previously developed nonsmooth optimization approach to address this difficult large-scale OPF problem, which is an iterative process to generate a sequence of improved solutions that converge to an optimal solution. Each iteration calls an SDP of a moderate dimension. Intensive simulations for OPF over networks with a large number of buses are provided to demonstrate the efficiency of our approach.

References

  1. Andersen, M. S., Hansson, A., and Vandenberghe, L. (2014). Reduced-complexity semidefinite relaxations of optimal power flow problems. IEEE Trans. Power Systems, 29(4):1855-1863.
  2. Bai, X., Wei, H., Fujisawa, K., and Wang, Y. (2008). Semidefinite programming for optimal power flow problems. Elect. Power Energy Syst., 30(6-7):383- 392.
  3. Bonnans, J. F., Gilbert, J. C., Lemarechal, C., and Sagastizabal, C. (2006). Numerical Optimization Theoretical and Practical Aspects (second edition). Springer.
  4. Bukhsh, W., Grothey, A., McKinnon, K., and Trodden, P. (2013). Local solutions of the optimal power flow problem. IEEE Trans. Power Systems, 28(4):4780- 4788.
  5. Carpentier, J. (1962). Contribution to the economic dispatch problem. Bulletin Society Francaise Electriciens, 3(8):431-447.
  6. Huneault, M. and Galiana, F. D. (1991). A survey of the optimal power flow literature. IEEE Trans. Power Systems, 6(2):762-770.
  7. Lavaei, J. and Low, S. H. (2012). Zero duality gap in optimal power flow problem. IEEE Trans. Power Systems, 27(1):92-107.
  8. Madani, R., Ashraphijuo, M., and Lavaei, J. (2015a). Promises of conic relaxation for contigencyconstrained optimal power flow problem. IEEE Trans. Power Systems, 30.
  9. Madani, R., Sojoudi, S., and Lavaei, J. (2015b). Convex relaxation for optimal power flow problem: Mesh networks. IEEE Trans. Power Systems, 30:199-211.
  10. Molzahn, D. K., Holzer, J. T., Lesieutre, B. C., and DeMarco, C. L. (2013). Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans. Power Systems, 28:3987- 3998.
  11. Momoh, J. A., El-Hawary, M. E., and Adapa, R. (1999). A review of selected optimal power flow literature to 1993. part I: Nonlinear and quadratic programming approaches. Solar Energy, 14(1):96-104.
  12. Pandya, K. S. and Joshi, S. K. (2008). A survey of optimal power flow methods. J. of Theoretical and Applied Information Technology, 4(5):450-458.
  13. Shi, Y., Tuan, H. D., Su, S., and Tam, H. H. M. (2015). Nonsmooth optimization for optimal power flow over transmission networks. In Proc. 2015 IEEE Global Conf. on Signal and Information Processing (GlobalSIP).
  14. Zimmerman, R. D., Murillo-Sanchez, C. E., and Thomas, R. J. (2011). MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Systems, 26(1):12-19.
Download


Paper Citation


in Harvard Style

Shi Y., Tuan H., Su S. and Savkin A. (2016). Multiple Matrix Rank Constrained Optimization for Optimal Power Flow over Large Scale Transmission Networks . In Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-184-7, pages 384-389. DOI: 10.5220/0005921303840389


in Bibtex Style

@conference{smartgreens16,
author={Y. Shi and H. D. Tuan and S. W. Su and A. V. Savkin},
title={Multiple Matrix Rank Constrained Optimization for Optimal Power Flow over Large Scale Transmission Networks},
booktitle={Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2016},
pages={384-389},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005921303840389},
isbn={978-989-758-184-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Multiple Matrix Rank Constrained Optimization for Optimal Power Flow over Large Scale Transmission Networks
SN - 978-989-758-184-7
AU - Shi Y.
AU - Tuan H.
AU - Su S.
AU - Savkin A.
PY - 2016
SP - 384
EP - 389
DO - 10.5220/0005921303840389