Fuzzy Clustering based Approach for Ontology Alignment

Rihab Idoudi, Karim Saheb Ettabaa, Kamel Hamrouni, Basel Solaiman


Recently, several ontologies have been proposed for real life domains, where these propositions are large and voluminous due to the complexity of the domain. Consequently, Ontology Aligning has been attracting a great deal of interest in order to establish interoperability between heterogeneous applications. Although, this research has been addressed, most of existing approaches do not well capture suitable correspondences when the size and structure vary vastly across ontologies. Addressing this issue, we propose in this paper a fuzzy clustering based alignment approach which consists on improving the ontological structure organization. The basic idea is to perform the fuzzy clustering technique over the ontology’s concepts in order to create clusters of similar concepts with estimation of medoids and membership degrees. The uncertainty is due to the fact that a concept has multiple attributes so to be assigned to different classes simultaneously. Then, the ontologies are aligned based on the generated fuzzy clusters with the use of different similarity techniques to discover correspondences between conceptual entities.


  1. Algergawy, S. Massmann & E. Rahm, 2011. A ClusteringBased Approach For Large-Scale Ontology Matching. Advances In Databases And Information Systems, January.Pp. 415-428.
  2. Bulzan, S.D. Bioportal. [En Ligne] Available At: Http://Bioportal.Bioontolgy.Org/Ontolo gies/Bcgo [Accès Le 26 June 2009].
  3. Bulzan, Bioportal. [En Ligne] Available At: Http://Bioportal.Bioontology.Org/Ontol ogies/Bcgo [Accès Le 26 June 2009].
  4. Duan, Fokoue, A., K.Srinivas & B.Byrne, 2011. A Clustering-Based Approach To Ontology Alignment. The Semantic Web-Iswc Springer, Pp. 146-161.
  5. Fernández, J.Velasco, I.J.Marsa-Maestre & M.LopezCarmona, 2012. Fuzzyalign: A Fuzzy Method For Ontology Alignment.. Keod 2012 - Proceedings Of The International Conference On Knowledge Engineering And Ontology Development, Pp. 98-107.
  6. Giunchiglia, Autayeu, A. & Pane, J., S.D. S-Match: An Open Source Framework For Matching Lightweight Ontologies.. Semantic Web, 3(3), Pp. 307-317.
  7. Hamdi, F. & Safar, B., 2009. Partitionnement D'ontologies Pour Le Passage A L'échelle Des Techniques D'alignement. 9eme Journées Francophones Extraction Et Gestion Des Connaissances.
  8. Hu, W., Qu, Y. & Cheng, G., 2008. Matching Large Ontologies: A Divide-And-Conquerapproach. Data And Knowledge Engineering, Volume 67, Pp. 140-160.
  9. Hu, W., Zhao, Y. & Y.Qu, 2006. Partition-Based Block Matching Of Large Class Hierarchies. Proceedings Of The First Asian Conference On The Semantic Web, P. 72-83.
  10. Idoudi, R., Ettabaa, K. S., Hamrouni, K. & Solaiman, B., 2014. An Evidence Based Approach For Multipe Similarity Measures Combining For Ontology Aligning. 1st Ieee International Conference On Image Processing Applications And Systems Conference (Ipas), November.
  11. Jafar, O. M. & Sivakumar, R., 2014. Hybrid Fuzzy Data Clustering Algorithm Using Different Distance Metrics: A Comparative Study. International Journal Of Soft Computing And Engineering (Ijsce), January, 3(6), Pp. 241-248.
  12. Massmann, S. Et Al., 2011. Evolution Of The Coma Match System. Ontology Matching, June.Volume 49.
  13. Ngo, D., 2012. Enhancing Ontology Matching By Using Machine Learning, Graph Matching And Information Retrieval Techniques, Montpellier: Université Montpellier Ii.
  14. Ningsheng, Cheng, W. & Q.Yuzhong, 2005. Falcon-Ao: Aligning Ontologies With Falcon. K-Cap Workshop On Integrating Ontologies, Pp. 85-91.
  15. Qiu & Liu, Y., 2014. An Effective Approach To Fuzzy Ontologies Alignment. International Journal Of Database Theory And Application, 7(3), Pp. 73-82.
  16. Schlicht, A. & Stuckenschmidt, H., 2008. A Flexible Partitioning Tool For Large Ontologies. Ieee/Wic/Acm International Conference On Web Intelligence, Wi, December.P. 482-488..
  17. Seddiquia, M. & Aono, M., 2009. An Efficient And Scalable Algorithm For Segmented Alignment Of Ontologies Of Arbitrary Size. Web Semantics, 7(4), Pp. 344-356.
  18. Shvaiko & Euzenat, J., 2005. Survey Of Schema-Based Matching Approaches. Journal On Data Semantics Iv, Pp. 146-171.
  19. Toujilov, P., 2012. Mammographic Knowledge Representation In Description Logic. Springer, August .Pp. 158-169.
  20. Tu, K. Et Al., 2005,. Towards Imaging Large-Scale Ontologies For Quick Understanding And Analysis. Proceedings Of The 4th International Semantic Web Conference, Lncs, Volume 3729, P. 702-715.
  21. Wanga & Zhang, 2007. On Fuzzy Cluster Validity Indices. Fuzzy Sets And Systems, 14 March, 158(19), P. 2095- 2117.
  22. Wang, Zhou & B.Xu, 2011. Matching Large Ontologies Based On Reduction Anchors. Proceedings Of The Twenty-Second International Joint Conference On, Volume 3, P. 2343-2348.

Paper Citation

in Harvard Style

Idoudi R., Ettabaa K., Hamrouni K. and Solaiman B. (2016). Fuzzy Clustering based Approach for Ontology Alignment . In Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-187-8, pages 594-599. DOI: 10.5220/0005916805940599

in Bibtex Style

author={Rihab Idoudi and Karim Saheb Ettabaa and Kamel Hamrouni and Basel Solaiman},
title={Fuzzy Clustering based Approach for Ontology Alignment},
booktitle={Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Fuzzy Clustering based Approach for Ontology Alignment
SN - 978-989-758-187-8
AU - Idoudi R.
AU - Ettabaa K.
AU - Hamrouni K.
AU - Solaiman B.
PY - 2016
SP - 594
EP - 599
DO - 10.5220/0005916805940599