Effects of Climate Change on Earth’s Parameters - An Example of Exabyte-sized System

Giampiero Sindoni, Erricos C. Pavlis, Claudio Paris, Antonio Paolozzi, Ignazio Ciufolini


Climate change at global scale affects Earth characteristics that can be detected by measuring global parameters such as Earth rotation and centre of mass variations. Similarly, changes in the harmonics of Earth’s gravitational field model are an indication of environmental changes and provide a measure of the mass redistributions causing these variations. There are four independent space geodetic techniques today that monitor Earth’s geometric and dynamic parameters very accurately: Very Long Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging (SLR/LLR), Global Navigation Satellite Systems (GNSS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). These techniques have been operational for decades, collecting a very large amount of data that after appropriate processing provide, among other things, the Earth geometric and dynamic parameters used in global climate change monitoring. The same techniques are also necessary for the establishment and maintenance of the International Terrestrial Reference Frame (ITRF). To make the large amount of data more easily usable, scientists and engineers employ reduction techniques to significantly reduce the amount of raw data with minimal loss of information. It will be shown that the total amount of data available today is of the order of exabyte. Due to the complexity of data management and processing several national and international bodies have been established.


  1. Bosco, A., Cantone, C., Dell'Agnello, S., Delle Monache, G. O., Franceschi, M. A., and Garattini, M. a. a. (2007). Probing gravity in NEO with high-accuracy laser-ranged test masses. International Journal of Modern Physics D, 16(12a):2271-2285.
  2. Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D. (2013). Rapid ice melting drives earth's pole to the east. Geophysical Research Letters, 40(11):2625- 2630.
  3. Ciufolini, I., Monge, B. M., Paolozzi, A., Koenig, R., Sindoni, G., Michalak, G., and Pavlis, E. (2013a). Monte carlo simulations of the LARES space experiment to test general relativity and fundamental physics. Classical and Quantum Gravity, 30.
  4. Ciufolini, I., Paolozzi, A., Koenig, R., Pavlis, E. C., Ries, J., Matzner, R., Gurzadyan, V., Penrose, R., Sindoni, G., and Paris, C. (2013b). Fundamental physics and general relativity with the LARES and LAGEOS satellites. Nuclear Physics B - Proceedings Supplements, 243-244:180-193.
  5. Ciufolini, I., Paolozzi, A., and Paris, C. (2012a). Overview of the LARES mission: orbit, error analysis and technological aspects. Journal of Physics. Conference Series, 354. conference 1.
  6. Ciufolini, I., Paolozzi, A., Pavlis, E., Koenig, R., Ries, J., Gurzadyan, V., Matzner, R., Penrose, R., Sindoni, G., and Paris, C. (2015). Preliminary orbital analysis of the lares space experiment. The European Physical Journal Plus, 130(7).
  7. Ciufolini, I. and Pavlis, E. C. (2004). A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 431:958-960.
  8. Ciufolini, I., Pavlis, E. C., Chieppa, F., Fernandes-Vieira, E., and Mercader, J. P. (1998). Test of general relativity and measurement of the Lense-Thirring effect with two earth satellites. Science, 279:2100-2103.
  9. Ciufolini, I., Pavlis, E. C., Paolozzi, A., Ries, J., Koenig, R., Matzner, R., Sindoni, G., and Neumayer, H. (2012b). Phenomenology of the Lense-Thirring effect in the solar system: measurement of frame-dragging with laser ranged satellites. New Astronomy, 17:341-346.
  10. Ciufolini, I. and Ricci, F. (2002). Time delay due to spin inside a rotating shell. Classical and Quantum Gravity, 19(15):3875.
  11. Kouba, J. and Vondrk, J. (2005). Comparison of length of day with oceanic and atmospheric angular momentum series. J. Geod, 79:256-268.
  12. Lehmann, E., Grtzsch, A., Ulbrich, U., Leckebusch, G., Nevir, P., and Thomas, M. (2009). Long-term erp time series as indicators for global climate variability and climate change. Geophysical Research Abstracts, 11:EGU2009-9084-1.
  13. Paolozzi, A. and Ciufolini, I. (2013). LARES succesfully launched in orbit: satellite and mission description. Acta Astronautica, 91:313-321.
  14. Paolozzi, A., Ciufolini, I., Flamini, E., Gabrielli, A., and Mangraviti, E. (2012). LARES is in orbit! some aspects of the mission. In 63rd International Astronautical Congress IAC 2012. IAF.
  15. Paolozzi, A., Ciufolini, I., Paris, C., and Sindoni, G. (2015). LARES, a new satellite specifically designed for testing general relativity. International Journal of Aerospace Engineering, Volume 2015:9 pages. Article ID 341384.
  16. Pavlis, E., Sindoni, G., Paolozzi, A., and Ciufolini, I. (2015a). Contribution of LARES and geodetic satellites on environmental monitoring. In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pages 1989-1994. IEEE.
  17. Pavlis, E. C., Paolozzi, A., Ciufolini, I., Paris, C., Sindoni, G., and Gabrielli, A. (2015b). Use of LARES satellite data for earth science. In Proceedings of XXIII AIDAA Conference. AIDAA.
  18. Pearlman, M., Degnan, J., and Bosworth, J. (2002). The international laser ranging service. Advances in Space Research, 30:135-143.
  19. Sindoni, G., Paris, C., Vendittozzi, C., Pavlis, E., Ciufolini, I., and Paolozzi, A. The contribution of LARES to global climate change studies with geodetic satellites. In Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2015).

Paper Citation

in Bibtex Style

author={Giampiero Sindoni and Erricos C. Pavlis and Claudio Paris and Antonio Paolozzi and Ignazio Ciufolini},
title={Effects of Climate Change on Earth’s Parameters - An Example of Exabyte-sized System},
booktitle={Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,},

in Harvard Style

Sindoni G., Pavlis E., Paris C., Paolozzi A. and Ciufolini I. (2016). Effects of Climate Change on Earth’s Parameters - An Example of Exabyte-sized System . In Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS, ISBN 978-989-758-181-6, pages 131-138. DOI: 10.5220/0005905101310138

in EndNote Style

JO - Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,
TI - Effects of Climate Change on Earth’s Parameters - An Example of Exabyte-sized System
SN - 978-989-758-181-6
AU - Sindoni G.
AU - Pavlis E.
AU - Paris C.
AU - Paolozzi A.
AU - Ciufolini I.
PY - 2016
SP - 131
EP - 138
DO - 10.5220/0005905101310138