Analyzing the Acoustic Urban Environment - A Geofencing-centered Approach in the Curitiba Metropolitan Region, Brazil

Nádia P. Kozievitch, Luiz C. Gomes-Jr, Tatiana M. C. Gadda, Keiko V. O. Fonseca, Monika Akbar

Abstract

The industrial development and Brazilian economic context led to important structural changes, among others, the increase of population migration (rural to urban spaces), number of private vehicles (due to tax reduction and state subsidies for new cars and fuel), among others. Such changes impact not only the urban mobility at big cities but also the urban life quality, which is directly affected by pollutant emissions and noise. In order to limit emission impacts on sensitive population (children, elderly people, for example), city managers can enforce bounds on emissions and noise pollution generated by the city traffic in specific regions defined by geographical boundaries. This paper aims to contribute to the challenge of managing urban noise by exploring and analyzing the data with a geofencing approach. In particular, we present a exploratory data analysis toward a case study in Curitiba (1,800,000 inhabitants, a southern Brazilian city) aiming at analyzing possible sources of noise based on a particular data set of noise measurements, geographical information data, traffic, transportation and city licensing data.

References

  1. Arndt, L. T., Philips, J. W., and Barbosa, W. A. (2010). Sistema de informac¸o˜es geográficas para mapeamento do ruído urbano. In SIMGEO 7810, pages 001-0010.
  2. Barczyszyn, G. L. (2015). Integrac¸a˜o de dados geográficos para planejamento urbano da cidade de Curitiba (Integration of geographic data for the urban planning of the city of Curitiba). Universidade Tecnológica Federal do Paraná.
  3. Bijsterveld, K. (2008). Mechanical Sound: Technology, Culture, and Public Problems of Noise in the Twentieth Century. The MIT Press.
  4. Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh International Conference on World Wide Web 7, WWW7, pages 107-117, Amsterdam, The Netherlands. Elsevier Science Publishers B. V.
  5. Brown, A. and Lam, K. (1987). Urban noise surveys. Applied Acoustics, 20(1):23-39.
  6. Calixto, A., Diniz, F. B., and Zannin, P. (2003). The statistical modeling of road traffic noise in an urban setting. Cities, 20:1-74.
  7. Chen, R., Chu, T., Liu, J., Chen, Y., Chen, L., Xu, W., Li, X., Hyyppa, J., and Tang, J. (2014). Development of a contextual thinking engine in mobile devices. In UPINLBS 7814, pages 90-96.
  8. Duclaux, O., Frejafon, E., Schmidt, H., Thomasson, A., Mondelain, D., Yu, J., Guillaumond, C., Puel, C., Savoie, F., Ritter, P., Boch, J., and Wolf, J. (2002). 3dair quality model evaluation using the lidar technique. Atmospheric Environment, 36(32):5081 - 5095.
  9. Erwig, M., Guting, R., Schneider, M., and Vazirgiannis, M. (1999). Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269-296.
  10. Greenwald, A., Hampel, G., Phadke, C., and Poosala, V. (2011). An economically viable solution to geofencing for mass-market applications. Bell Lab. Tech. J., 16(2):21-38.
  11. Hartwig, F. and Dearing, B. (1979). Exploratory Data Analysis. 07. SAGE Publications.
  12. LNZ Soluc¸o˜es em Vibrac¸ o˜es e Ac ústica (2011). Diagnóstico de Ruídos Urbanos - Relat ório Final. Technical report, Prefeitura Municipal de Curitiba - Secretaria Municipal do Meio Ambiente .
  13. Louen, C., Wehrens, A., and Vallée, D. (2014). Analysis of the effectiveness of different noise reducing measures based on individual perception in germany. Transportation Research Procedia, 4:472-481.
  14. Madireddy, M., De Coensel, B., Can, A., Degraeuwe, B., Beusen, B., De Vlieger, I., and Botteldooren, D. (2011). Assessment of the impact of speed limit reduction and traffic signal coordination on vehicle emissions using an integrated approach. Transportation research part D: transport and environment, 16(7):504-508.
  15. Martinez, W., Martinez, A., and Solka, J. (2010). Exploratory Data Analysis with MATLAB, Second Edition. Chapman & Hall/CRC Computer Science & Data Analysis. Taylor & Francis.
  16. Mcdougall, K. (2011). The potential of citizen volunteered spatial information for building sdi. In GSDI-11 Conference.
  17. Mostashari, A., Arnold, F., Maurer, M., and Wade, J. (2011). Citizens as sensors: The cognitive city paradigm. In CEWIT 7811, pages 1-5.
  18. Moura, T. H. V. M. and Davis Jr., C. A. (2013). Linked geospatial data: desafios e oportunidades de pesquisa. In XIV Brazilian Symposium on GeoInformatics., pages 13-18. SBC.
  19. NIST/SEMATECH (2012). E-Handbook of Statistical Methods, available at http://www.itl.nist.gov/div898/ handbook/.
  20. Oliveira, M. P. G., Medeiros, E. B., and Davis, Jr., C. A. (1999). Planning the Acoustic Urban Environment: A GIS-centered Approach. In GIS 7899, pages 128-133, New York, NY, USA. ACM.
  21. Ravada, S., Ali, M., Bao, J., and Sarwat, M. (2013). Acm sigspatial gis cup 2013: Geo-fencing. In SIGSPATIAL'13, pages 584-587, New York, NY, USA. ACM.
  22. Rodrigues, F. (2010). Metodologia para investigac¸a˜o de relac¸a˜o entre ruído de tr áfego e condic¸o˜es operacionais do fluxo em centros . PhD thesis, Instituto Alberto Luiz Coimbra de Pós-Graduac¸a˜o e Pesquisa de Engenharia - UFRJ.
  23. Rodriguez Garzon, S. and Deva, B. (2014). Geofencing 2.0: Taking location-based notifications to the next level. In UbiComp 7814, pages 921-932, New York, NY, USA. ACM.
  24. Ryoo, J., Kim, H., and Das, S. (2012). Geo-fencing: Geographical-fencing based energy-aware proactive framework for mobile devices. In Quality of Service (IWQoS), 2012 IEEE 20th International Workshop on, pages 1-9.
  25. Schweizer, I., Darmstadt, T., Probst, F., Bärtl, R., Darmstadt, T., Mühlhäuser, M., Darmstadt, T., Schulz, A., and Darmstadt, T. (2011). Noisemap - real-time participatory noise maps. In PhoneSense'2011.
  26. Sheth, A., Seshan, S., and Wetherall, D. (2009). Geofencing: Confining wi-fi coverage to physical boundaries. In Pervasive 7809, pages 274-290. SpringerVerlag.
  27. Verheijen, E. and Jabben, J. (2010). Effect of electric cars on traffic noise and safety. Bilthoven: RIVM.
  28. Zannin, P. H. T., Calixto, A., Diniz, F. B., and C., J. A. (2003). A survey of urban noise annoyance in a large brazilian city: the importance of a subjective analysis in conjunction with an objective Environmental Impact Assessment Review, 23:245-255.
  29. Zannin, P. H. T., Diniz, F. B., and Barbosa, W. A. (2002). Environmental noise pollution in the city of Curitiba, Brazil . Applied Acoustics, 63(4):351 - 358.
Download


Paper Citation


in Harvard Style

Kozievitch N., Gomes-Jr L., Gadda T., Fonseca K. and Akbar M. (2016). Analyzing the Acoustic Urban Environment - A Geofencing-centered Approach in the Curitiba Metropolitan Region, Brazil . In Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-184-7, pages 78-85. DOI: 10.5220/0005840500780085


in Bibtex Style

@conference{smartgreens16,
author={Nádia P. Kozievitch and Luiz C. Gomes-Jr and Tatiana M. C. Gadda and Keiko V. O. Fonseca and Monika Akbar},
title={Analyzing the Acoustic Urban Environment - A Geofencing-centered Approach in the Curitiba Metropolitan Region, Brazil},
booktitle={Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2016},
pages={78-85},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005840500780085},
isbn={978-989-758-184-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Analyzing the Acoustic Urban Environment - A Geofencing-centered Approach in the Curitiba Metropolitan Region, Brazil
SN - 978-989-758-184-7
AU - Kozievitch N.
AU - Gomes-Jr L.
AU - Gadda T.
AU - Fonseca K.
AU - Akbar M.
PY - 2016
SP - 78
EP - 85
DO - 10.5220/0005840500780085