Bayesian Inference in Dynamic Domains using Logical OR Gates

Rik Claessens, Alta de Waal, Pieter de Villiers, Ate Penders, Gregor Pavlin, Karl Tuyls

Abstract

The range of applications that require processing of temporally and spatially distributed sensory data is expanding. Common challenges in domains with these characteristics are sound reasoning about uncertain phenomena and coping with the dynamic nature of processes that influence these phenomena. To address these challenges we propose the use of causal Bayesian Networks for probabilistic reasoning and introduce the Logical OR gate in order to combine them with dynamic processes estimated by arbitrary Markov processes. To illustrate the genericness of the proposed approach, we apply it in a wildlife protection use case. Furthermore we show that the resulting model supports modularization of computations, which allows for efficient decentralized processing.

References

  1. Borsuk, M. E., Reichert, P., Peter, A., Schager, E., and Burkhardt-Holm, P. (2006). Assessing the decline of brown trout salmotrutta in Swiss rivers using a Bayesian probability network. Ecological Modelling, 192(1):224-244.
  2. Borsuk, M. E., Stow, C. A., and Reckhow, K. H. (2004). A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 173(2):219-239.
  3. Bromley, J., Jackson, N., Clymer, O., Giacomello, A., and Jensen, F. (2005). The use of Hugin R to develop Bayesian networks as aid to integrated water resource planning. Environ. Model. Software, pages 231 - 242.
  4. de Oude, P. and Pavlin, G. (2009). Efficient Distributed Bayesian Reasoning via Targeted Instantiation of Variables. pages 323-330.
  5. Dörner, D. and Schaub, H. (1994). Errors in Planning and Decision-making and the Nature of Human Information Processing. Applied Psychology, 43(4):433-453.
  6. Düspohl, M., Frank, S., and Doell, P. (2012). A Review of Bayesian Networks as a Participatory Modeling Approach in Support of Sustainable Environmental Management. Journal of Sustainable Development, 5(12).
  7. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., and Nordlund, P.-J. (2002). Particle Filters for Positioning, Navigation, and Tracking. IEEE Transactions on Signal Processing, 50(2):425-437.
  8. Johnson, S., Mengersen, K., de Waal, A., Marnewick, K., Cilliers, D., Houser, A. M., and Boast, L. (2010). Modelling cheetah relocation success in southern Africa using an Iterative Bayesian Network Development Cycle. Ecological Modelling, 221(4):641 - 651.
  9. Koen, H., de Villiers, P., Pavlin, G., de Waal, A., de Oude, P., and Mignet, F. (2014). A Framework for Inferring Predictive Distributions of Rhino Poaching Events through Causal Modelling. 17th International Conference on Information Fusion, 2014.
  10. Paskin, M. and Guestrin, C. (2004). Robust Probabilistic Inference in Distributed Systems. In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), pages 436-445, Banff, Canada. AUAI Press.
  11. Pavlin, G., de Oude, P., Maris, M., Nunnink, J., and Hood, T. (2010). A Multi-Agent Systems Approach to Distributed Bayesian Information Fusion. Information Fusion, 11(3):267 - 282.
  12. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  13. Pullar, D. and Phan, T. (2007). Using a Bayesian Network in a GIS to model relationships and threats to koala populations close to urban environments. In Oxley, L. and Kulasiri, D., editors, MODSIM 2007: Land, water and environmental management: Integrated systems for sustainability., pages 1370-1375.
  14. Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press.
  15. Xiang, Y. (2002). Probabilistic reasoning in multiagent systems: a graphical models approach. Cambridge University Press.
Download


Paper Citation


in Harvard Style

Claessens R., de Waal A., de Villiers P., Penders A., Pavlin G. and Tuyls K. (2016). Bayesian Inference in Dynamic Domains using Logical OR Gates . In Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-187-8, pages 134-142. DOI: 10.5220/0005768601340142


in Bibtex Style

@conference{iceis16,
author={Rik Claessens and Alta de Waal and Pieter de Villiers and Ate Penders and Gregor Pavlin and Karl Tuyls},
title={Bayesian Inference in Dynamic Domains using Logical OR Gates},
booktitle={Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2016},
pages={134-142},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005768601340142},
isbn={978-989-758-187-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Bayesian Inference in Dynamic Domains using Logical OR Gates
SN - 978-989-758-187-8
AU - Claessens R.
AU - de Waal A.
AU - de Villiers P.
AU - Penders A.
AU - Pavlin G.
AU - Tuyls K.
PY - 2016
SP - 134
EP - 142
DO - 10.5220/0005768601340142