Classification of Mild Cognitive Impairment Subtypes using Neuropsychological Data

Upul Senanayake, Arcot Sowmya, Laughlin Dawes, Nicole A. Kochan, Wei Wen, Perminder Sachdev

Abstract

While the research on Alzheimer’s disease (AD) is progressing, timely intervention before an individual becomes demented is often emphasized. Mild Cognitive Impairment (MCI), which is thought of as a prodromal syndrome to AD, may be useful in this context as potential interventions can be applied to individuals at increased risk of developing dementia. The current study attempts to address this problem using a selection of machine learning algorithms to discriminate between cognitively normal individuals and MCI individuals among a cohort of community dwelling individuals aged 70-90 years based on neuropsychological test performance. The overall best algorithm in our experiments was AdaBoost with decision trees while random forests was consistently stable. Ten-fold cross validation was used with ten repetitions to reduce variability and assess generalizing capabilities of the trained models. The results presented are consistently of the same calibre or better than the limited number of similar studies reported in the literature.

References

  1. Alexander, A. L., Lee, J. E., Lazar, M., and Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3):316-329. 17599699[pmid].
  2. Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. (2004). Ensemble selection from libraries of models. In Proceedings of the Twenty-first International Conference on Machine Learning, ICML 7804, pages 18-, New York, NY, USA. ACM.
  3. Chételat, G., Landeau, B., Eustache, F., Mézenge, F., Viader, F., de la Sayette, V., Desgranges, B., and Baron, J.-C. (2005). Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage, 27(4):934-46.
  4. Chua, T. C., Wen, W., Chen, X., Kochan, N., Slavin, M. J., Trollor, J. N., Brodaty, H., and Sachdev, P. S. (2009). Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry, 17(July):602-613.
  5. Chua, T. C., Wen, W., Slavin, M. J., and Sachdev, P. S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer s disease : a review. Current Opinions in Neurology.
  6. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273-297.
  7. Crisci, C., Ghattas, B., and Perera, G. (2012). A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling, 240:113 - 122.
  8. Cui, Y., Sachdev, P. S., Lipnicki, D. M., Jin, J. S., Luo, S., Zhu, W., Kochan, N. a., Reppermund, S., Liu, T., Trollor, J. N., Brodaty, H., and Wen, W. (2012a). Predicting the development of mild cognitive impairment: A new use of pattern recognition. NeuroImage, 60(2):894-901.
  9. Cui, Y., Wen, W., Lipnicki, D. M., Beg, M. F., Jin, J. S., Luo, S., Zhu, W., Kochan, N. a., Reppermund, S., Zhuang, L., Raamana, R., Liu, T., Trollor, J. N., Wang, L., Brodaty, H., and Sachdev, P. S. (2012b). Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: A combined spatial atrophy and white matter alteration approach. NeuroImage, 59(2):1209-1217.
  10. Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting.
  11. Ganguli, M., Snitz, B. E., Saxton, J. A., Chang, C.-C. H., Lee, C.-W., Bilt, J. V., Hughes, T. F., Loewenstein, D. A., Unverzagt, F. W., and Petersen, R. C. (2011).
  12. Outcomes of mild cognitive impairment depend on definition: a population study. Archives of neurology, 68(6):761-767.
  13. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., Chertkow, H., Cummings, J. L., de Leon, M., Feldman, H., Ganguli, M., Hampel, H., Scheltens, P., Tierney, M. C., Whitehouse, P., and Winblad, B. (2006). Mild cognitive impairment. The Lancet, 367(9518):1262 - 1270.
  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10-18.
  15. Haller, S., Missonnier, P., Herrmann, F. R., Rodriguez, C., Deiber, M.-P., Nguyen, D., Gold, G., Lovblad, K.-O., and Giannakopoulos, P. (2013). Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI. AJNR. American journal of neuroradiology, 34(2):283-91.
  16. Hedden, T. and Gabrieli, J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci, 5(2):87-96.
  17. Hindmarch, I., Lehfeld, H., de Jongh, P., and Erzigkeit, H. (1998). The bayer activities of daily living scale (badl). Dementia and Geriatric Cognitive Disorders, 9(suppl 2)(Suppl. 2):20-26.
  18. Hinrichs, C., Singh, V., Xu, G., and Johnson, S. C. (2011). Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage, 55(2):574-589.
  19. Kochan, N. A., Slavin, M. J., Brodaty, H., Crawford, J. D., Trollor, J. N., Draper, B., and Sachdev, P. S. (2010). Effect of Different Impairment Criteria on Prevalence of “Objective” Mild Cognitive Impairment in a Community Sample. The American Journal of Geriatric Psychiatry, 18(8):711-722.
  20. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. informatica 31:249268.
  21. Lemm, S., Blankertz, B., Dickhaus, T., and Muller, K.-R. (2011). Introduction to machine learning for brain imaging. NeuroImage, 56(2):387 - 399.
  22. Lemos, L., Silva, D., Guerreiro, M., Santana, I., de Mendona, A., Toms, P., and Madeira, S. C. (2012). Discriminating alzheimers disease from mild cognitive impairment using neuropsychological data. KDD 2012.
  23. Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R news, 2(3):18-22.
  24. Maglogiannis, I. (2007). Emerging Artificial Intelligence Applications in Computer Engineering: Real World AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies. Frontiers in artificial intelligence and applications. IOS Press.
  25. Mitchell, A. J. and Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4):252-265.
  26. Murthy, S. (1998). Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2(4):345-389.
  27. Petersen, R. C., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Smith, G. E., Roberts, R. O., and Jack, C. R. (2009). Mild Cognitive Impairment: Ten Years Later. Archives of neurology, 66(12):1447-1455.
  28. Raamana, P. R., Wen, W., Kochan, N. a., Brodaty, H., Sachdev, P. S., Wang, L., and Beg, M. F. (2014). The sub-classification of amnestic mild cognitive impairment using MRI-based cortical thickness measures. Frontiers in Neurology, pages 1-10.
  29. Reddy, P., Kochan, N., Brodaty, H., Sachdev, P., Wang, L., Beg, M. F., and Wen, W. (2013). Novel ThickNet features for the discrimination of amnestic MCI subtypes. NeuroImage Clinical, 6:284-295.
  30. Reppermund, S., Zhuang, L., Wen, W., Slavin, M. J., Trollor, J. N., Brodaty, H., and Sachdev, P. S. (2014). White matter integrity and late-life depression in community-dwelling individuals: diffusion tensor imaging study using tract-based spatial statistics. The British Journal of Psychiatry, 205:315-320.
  31. Sachdev, P. S., Brodaty, H., Reppermund, S., Kochan, N. A., Trollor, J. N., Draper, B., Slavin, M. J., Crawford, J., Kang, K., Broe, G. A., Mather, K. A., and Lux, O. (2010). The sydney memory and ageing study (mas): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of australians aged 7090 years. International Psychogeriatrics, 22:1248-1264.
  32. Sachdev, P. S., Lipnicki, D. M., Crawford, J., Reppermund, S., Kochan, N. a., Trollor, J. N., Wen, W., Draper, B., Slavin, M. J., Kang, K., Lux, O., Mather, K. a., Brodaty, H., and Team, A. S. (2013a). Factors Predicting Reversion from Mild Cognitive Impairment to Normal Cognitive Functioning: A Population-Based Study. PLoS ONE, 8(3):1-10.
  33. Sachdev, P. S., Zhuang, L., Braidy, N., and Wen, W. (2013b). Is Alzheimer's a disease of the white matter? Curr Opin Psychiatry, 26(3):244-251.
  34. Thillainadesan, S., Wen, W., Zhuang, L., Crawford, J., Kochan, N., Reppermund, S., Slavin, M., Trollor, J., Brodaty, H., and Sachdev, P. (2012). Changes in mild cognitive impairment and its subtypes as seen on diffusion tensor imaging. International Psychogeriatrics, 24:1483-1493.
Download


Paper Citation


in Harvard Style

Senanayake U., Sowmya A., Dawes L., Kochan N., Wen W. and Sachdev P. (2016). Classification of Mild Cognitive Impairment Subtypes using Neuropsychological Data . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 620-629. DOI: 10.5220/0005747806200629


in Bibtex Style

@conference{icpram16,
author={Upul Senanayake and Arcot Sowmya and Laughlin Dawes and Nicole A. Kochan and Wei Wen and Perminder Sachdev},
title={Classification of Mild Cognitive Impairment Subtypes using Neuropsychological Data},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={620-629},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005747806200629},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Classification of Mild Cognitive Impairment Subtypes using Neuropsychological Data
SN - 978-989-758-173-1
AU - Senanayake U.
AU - Sowmya A.
AU - Dawes L.
AU - Kochan N.
AU - Wen W.
AU - Sachdev P.
PY - 2016
SP - 620
EP - 629
DO - 10.5220/0005747806200629