Biometric Sensor Interoperability: A Case Study in 3D Face Recognition

Javier Galbally, Riccardo Satta

Abstract

Biometric systems typically suffer a significant loss of performance when the acquisition sensor is changed between enrolment and authentication. Such a problem, commonly known as sensor interoperability, poses a serious challenge to the accuracy of matching algorithms. The present work addresses for the first time the sensor interoperability issue in 3D face recognition systems, analysing the performance of two popular and well known techniques for 3D facial authentication. For this purpose, a new gender-balanced database comprising 3D data of 26 subjects has been acquired using two devices belonging to the new generation of low-cost 3D sensors. The results show the high sensor-dependency of the tested systems and the need to develop matching algorithms robust to the variation in the sensor resolution.

References

  1. Achermann, B. and Bunke, H. (2000). Classifying range images of human faces with Hausdorff distance. In Proc. of ICPR, pages 809-813.
  2. Alonso-Fernandez, F., Fierrez, J., et al. (2008). Dealing with sensor interoperability in multi-biometrics: The UPM experience at the biosecure multimodal evaluation 2007. In Proc. SPIE BTHI.
  3. Alonso-Fernandez, F., Fierrez-Aguilar, J., and OrtegaGarcia, J. (2005). Sensor interoperability and fusion in signature verification: A case study using tablet pc. In Proc. ABPA, Springer LNCS-3781, pages 180-187.
  4. Alonso-Fernandez, F., Veldhuis, R. N. J., et al. (2006). Sensor interoperability and fusion in signature verification: A case study using tablet pc. In Proc. ICARCV, pages 422-427.
  5. Amor, B. B., Ardabilian, M., and Chen, L. (2006). New experiments on ICP-based 3D face recognition and authentication. In Proc. of ICPR, page 11951199.
  6. ANSI-INCITS (2004). ANSI INCITS 385-2004 face recognition format for data interchange.
  7. Barnsley, M. F. (1993). Fractals everywhere, chapter Metric spaces; Equivalent spaces; Classification of subsets; and the space of fratals, pages 5-41. Morgan Kaufmann.
  8. BEAT (2012). BEAT: Biometrics Evaluation and Testing. http://www.beat-eu.org/.
  9. Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-D shapes. IEEE Trans. on PAMI, 14:239-256.
  10. Bowyer, K. W., Chang, K., and Flynn, P. (2006). A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Computer Vision and Image Understanding, 101:1-15.
  11. Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: measuring error on simplified surfaces. Computer Graphics Forum, 17:167-174.
  12. Faltemier, T. and Bowyer, K. (2006). Cross sensor 3D face recognition performance. In Proc. SPIE BTHI.
  13. Henrikson, J. (1999). Completeness and total boundedness of the hausdorff metric. MIT Undergraduate Journal of Mathematics, pages 69-80.
  14. Huttenlocher, D. and Rucklidge, W. (1992). A multiresolution technique for comparing images using the hausdorff distance. Technical Report Technical Report 1321, Cornell University.
  15. ISO/IEC (2011). ISO/IEC 19794-5:2011 information technology biometric data interchange formats.
  16. Khiyari, H. E., Abate, A. F., et al. (2012). Biometric interoperability across training, enrollment, and testing for face authentication. In Proc. IEEE BIOMS.
  17. Lu, X., Colbry, D., and Jain, A. (2004). Matching 2.5D scans for face recognition. In Proc. ICPR, pages 362- 366.
  18. Min, R., Kose, N., and Dugelay, J.-L. (2014). Kinectfacedb: A kinect database for face recognition. IEEE Trans. on SMCS.
  19. NIST (2014). NIST speaker recognition evaluation (SRE) series. http://www.itl.nist.gov/iad/mig/tests/spk/.
  20. Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition grand challenge. In Proc. IEEE ICVPR, pages 947- 954.
  21. Ross, A. and Jain, A. (2004). Biometric sensor interoperability: A case study in fingerprints. In Proc. BioAW, pages 134-145.
  22. Wang, Y. and Chua, C.-S. (2006). Robust face recognition from 2D and 3D images using structural hausdorff distance. Image and Vision Computing, 24:176-185.
  23. Zafeiriou, S., Hansen, M., et al. (2011). The photoface database. In Proc. IEEE ICVPRW, pages 132-139.
Download


Paper Citation


in Harvard Style

Galbally J. and Satta R. (2016). Biometric Sensor Interoperability: A Case Study in 3D Face Recognition . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 199-204. DOI: 10.5220/0005682501990204


in Bibtex Style

@conference{icpram16,
author={Javier Galbally and Riccardo Satta},
title={Biometric Sensor Interoperability: A Case Study in 3D Face Recognition},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={199-204},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005682501990204},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Biometric Sensor Interoperability: A Case Study in 3D Face Recognition
SN - 978-989-758-173-1
AU - Galbally J.
AU - Satta R.
PY - 2016
SP - 199
EP - 204
DO - 10.5220/0005682501990204