Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation

El-Hachemi Guerrout, Samy Ait-Aoudia, Dominique Michelucci, Ramdane Mahiou

Abstract

The goal of image segmentation is to simplify the representation of an image to items meaningful and easier to analyze. Medical image segmentation is one of the fundamental problems in image processing field. It aims to provide a crucial decision support to physicians. There is no one way to perform the segmentation. There are several methods based on HMRF. Hidden Markov Random Fields (HMRF) constitute an elegant way to model the problem of segmentation. This modelling leads to the minimization of an energy function. In this paper we investigate direct search methods that are Nelder-Mead and Torczon methods to solve this optimization problem. The quality of segmentation is evaluated on grounds truths images using the Kappa index called also Dice Coefficient (DC). The results show the supremacy of the methods used compared to others methods.

References

  1. Adams, R. and Bischof, L. (1994). Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(6):641-647.
  2. Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state markov chains. The annals of mathematical statistics, pages 1554- 1563.
  3. Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698.
  4. Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., Pike, G. B., and Evans, A. C. (1997). Brainweb: Online interface to a 3d mri simulated brain database. In NeuroImage. Citeseer.
  5. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1-38.
  6. Deng, H. and Clausi, D. A. (2004). Unsupervised image segmentation using a simple mrf model with a new implementation scheme. Pattern recognition, 37(12):2323-2335.
  7. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3):297-302.
  8. Held, K., Kops, E. R., Krause, B. J., Wells III, W. M., Kikinis, R., and Muller-Gartner, H.-W. (1997). Markov random field segmentation of brain mr images. Medical Imaging, IEEE Transactions on, 16(6):878-886.
  9. Hochbaum, D. S. (2001). An efficient algorithm for image segmentation, markov random fields and related problems. Journal of the ACM (JACM), 48(4):686-701.
  10. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active Contour Models. International Journal of Computer Vision, 1(4):321-331.
  11. Kato, Z. and Pong, T.-C. (2006). A markov random field image segmentation model for color textured images. Image and Vision Computing, 24(10):1103-1114.
  12. Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Optimization by direct search: New perspectives on some classical and modern methods. SIAM review, 45(3):385-482.
  13. Manjunath, B. and Chellappa, R. (1991). Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis & Machine Intelligence, (5):478-482.
  14. Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4):308-313.
  15. Ouadfel, S. and Batouche, M. (2003). Ant colony system with local search for markov random field image segmentation. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 1, pages I-133. IEEE.
  16. Panjwani, D. K. and Healey, G. (1995). Markov random field models for unsupervised segmentation of textured color images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(10):939-954.
  17. Sahoo, P. K., Soltani, S., and Wong, A. K. (1988). A survey of thresholding techniques. Computer vision, graphics, and image processing, 41(2):233-260.
  18. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. (2008). A comparative study of energy minimization methods for markov random fields with smoothness-based priors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(6):1068-1080.
  19. Wyatt, P. P. and Noble, J. A. (2003). Map mrf joint segmentation and registration of medical images. Medical Image Analysis, 7(4):539-552.
  20. Yousefi, S., Azmi, R., and Zahedi, M. (2012). Brain tissue segmentation in mr images based on a hybrid of mrf and social algorithms. Medical image analysis, 16(4):840-848.
  21. Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. Medical Imaging, IEEE Transactions on, 20(1):45-57.
Download


Paper Citation


in Harvard Style

Guerrout E., Ait-Aoudia S., Michelucci D. and Mahiou R. (2016). Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 154-161. DOI: 10.5220/0005658501540161


in Bibtex Style

@conference{icpram16,
author={El-Hachemi Guerrout and Samy Ait-Aoudia and Dominique Michelucci and Ramdane Mahiou},
title={Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={154-161},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005658501540161},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation
SN - 978-989-758-173-1
AU - Guerrout E.
AU - Ait-Aoudia S.
AU - Michelucci D.
AU - Mahiou R.
PY - 2016
SP - 154
EP - 161
DO - 10.5220/0005658501540161