Statistical Measurement Validation with Application to Electronic Nose Technology

Mina Mirshahi, Vahid Partovi Nia, Luc Adjengue

Abstract

An artificial olfaction called electronic nose (e-nose) relies on an array of gas sensors with the capability of mimicking the human sense of smell. Applying an appropriate pattern recognition on the sensor’s output returns odor concentration and odor classification. Odor concentration plays a key role in analyzing odors. Assuring the validity of measurements in each stage of sampling is a critical issue in sampling odors. An accurate prediction for odor concentration demands for careful monitoring of the gas sensor array measurements through time. The existing e-noses capture all odor changes in its environment with possibly varying range of error. Consequently, some measurements may distort the pattern recognition results. We explore e-nose data and provide a statistical algorithm to assess the data validity. Our online algorithm is computationally efficient and treats data as being sampled.

References

  1. Artursson, T., Eklov, T., Lundstrom, I., Martensson, P., Sjostrom, M., and Holmberg, M. (2000). Drift correction methods for gas sensors using multivariate methods. Journal of chemometrics, 14:711-723.
  2. Bermak, A., Belhouari, S. B., Shi, M., and Martinez, D. (2006). Pattern recognition techniques for odor discrimination in gas sensor array. Encyclopedia of sensors, X:1-17.
  3. Brys, G., Hubert, M., and Rousseeuw, P. J. (2006). A robustification of independent component analysis.Chemometrics, 19:364-375.
  4. Carlo, S. D. and Falasconi, M. (2012). Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. Advances in chemical sensors, pages 305-326.
  5. Croux, C. and Haesbroeck, G. (2000). Principal components analysis based on robust estimators of the covariance or correlation matrix: Infulence functions and efficiencies. Biometrika, 87:603-618.
  6. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9:432-441.
  7. Gardner, J. and Bartlett, P. (1994). A brief history of electronic noses. Sens. Actuat. b: chem., 18:211-220.
  8. Gutierrez-Osuna, R. (2002). Pattern analysis for machine olfaction : a review. IEEE Sensors journal, 2:189- 202.
  9. Hubert, M., Rousseeuw, P. J., and Branden, K. V. (2005). Robpca: A new approach to robust principal component analysis. Thechnometrics, 47:64-79.
  10. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10:626 - 634.
  11. Jolliffe, I. (2002). Principal Component Analysis. Springer.
  12. Josse, J., Pagès, J., and Husson, F. (2011). Multiple imputation for principal component analysis. Advances in data analysis and classifications , 5:231-246.
  13. Kermiti, M. and Tomic, O. (2003). Independent component analysis applied on gas sensor array measurement data. IEEE, Sensors Journal, IEEE, 3:218-228.
  14. Li, G. and Chen, Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and monte carlo. Journal of the american statistical association, 80:759-766.
  15. McGinley, P. C. and Inc, S. (2002). Standardized odor measurement practices for air quality testing. Air and Waste Management Association Symposium on Air Quality Measurement Methods and TechnologySan Francisco, CA.
  16. Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., and Marco, S. (2010). Drift compensation of gas sensor array data by orthogonal signal correction. Journal of chemometrics and Intelligent labrotory system, 100:28-35.
  17. Persaud, K. and Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299:352-355.
  18. Prendergast, L. (2008). A note on sensitivity of principal component subspaces and the efficient detection of influential observations in high dimensions. Electronic Journal of Statistics, 2:454-467.
  19. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58:267-288.
  20. Zuppa, M., Distante, C., Persaud, K. C., and Siciliano, P. (2007). Recovery of drifting sensor responses by means of DWT analysis. Journal of Sensors and Actuators, 120:411-416.
Download


Paper Citation


in Harvard Style

Mirshahi M., Nia V. and Adjengue L. (2016). Statistical Measurement Validation with Application to Electronic Nose Technology . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 407-414. DOI: 10.5220/0005628204070414


in Bibtex Style

@conference{icpram16,
author={Mina Mirshahi and Vahid Partovi Nia and Luc Adjengue},
title={Statistical Measurement Validation with Application to Electronic Nose Technology},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={407-414},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005628204070414},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Statistical Measurement Validation with Application to Electronic Nose Technology
SN - 978-989-758-173-1
AU - Mirshahi M.
AU - Nia V.
AU - Adjengue L.
PY - 2016
SP - 407
EP - 414
DO - 10.5220/0005628204070414