Robot and Insect Navigation by Polarized Skylight

F. J. Smith, D. W. Stewart

2014

Abstract

A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect.

References

  1. Bernard, G. D., Wehner, R., 1977. Functional similarities between polarization vision and color vision, Vision Res., 17, 1019-28.
  2. Fent, K., Wehner, R, 1985. Ocelli: A celestial compass in the desert ant Cataglyphis, Science, 228, 192-4.
  3. Goodman, L. J., 1970. The structure and function of the insect dorsal ocellus. Adv. Insect Phys., 7, 97-195.
  4. Heinze, S., Homberg, U., 2007. Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect, Science, 315, 995-7.
  5. Kirschfeld, K., Lindauer, M., Martin, H., 1975. Problems in menotactic orientation according to the polarized light of the sky, Z. Naturforsch, 30C, 88-90.
  6. Labhart, T., 1980. Specialized Photoreceptors at the dorsal rim of the honeybee's compound eye: Polarizational and Angular Sensitivity, J Comp. Phys., 141, 19-30.
  7. Labhart, T., 1988. Polarized-opponent interneurons in the insect visual system, Nature, 331, 435-7.
  8. Labhart, T., 1999. How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an optoelectronic model neurone, J. Exp. Biol., 202, 757-70.
  9. Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer, P., Wehner, R., 1998. Navigation with a polarized light compass, Self-Learning Robots II: BioRobotics (Digest 1998/248) IEE, London, 7/1-4.
  10. NASA,2005. www.nasatech.com/Briefs/Oct05/ NPO_41269.html.
  11. Pomozi, I., Horvath, G., Wehner, R., 2001. How the clear-sky angle of polarization pattern continues underneath clouds, J. Expt. Biol, 204, 2933-42.
  12. Rayleigh, Lord, 1871. On the light from the sky, its polarisation and colour, Phil Mag, 41, 107-20, 274-9.
  13. Rossel, S., 1993. Mini Review: Navigation by bees using polarized skylight, Comp. Biochem. Physiol, 104A, 695-705.
  14. Rossel, S., and Wehner, R., 1982. The bee's map of the evector pattern in the sky, Proc. Natl. Acad. Sci. USA, 79, 4451-5.
  15. Sommer, E. W., 1979. Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldoptologie im Auge der Honigbiene, Apis mellifera (Hymenoptera). PhD Thesis, Un. Zurich.
  16. Smith, F. J., 2008. A new algorithm for navigation by skylight based on insect vision, in Biosignals 2008, 2, Eds. P Encarnacao & A Veloso, Madeira, 185-90.
  17. Smith, F. J., 2009. Insect Navigation by Polarised Light in Biosignals 2009, 2, Porto, Portugal, 363-8.
  18. Tyndall, J., 1869. On the blue colour of the sky, the polarisation of skylight, and on the polarisation of cloudy matter, Proc. Roy. Soc., 17, 223.
  19. Von Frisch, K., 1949. Die Polarization des Himmelslichts als Orientierender Faktor bei den Tanzen der Bienen, Experientia, 5, 142-8.
  20. Wehner, R., 1989. The hymenopteran skylight compass: matched filtering and parallel coding, J Exp. Biol., 146, 63-85.
  21. Wehner, R., 1997. The Ant's celestial compass system: spectral and polarization channels, In Orientation and Communication in Arthropods, Ed. M. Lehler, Birkhauser, Berlag, Basel, Switzerland, 145-85.
  22. Wehner, R., and Raber, F., 1979. Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae), Experientia, 35, 1569-71.
  23. Wehner, R., 2001. Polarization vision - a uniform sensory capacity, J. Exp. Biol., 204, 2589-96.
Download


Paper Citation


in Harvard Style

Smith F. and Stewart D. (2014). Robot and Insect Navigation by Polarized Skylight . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 183-188. DOI: 10.5220/0004792101830188


in Bibtex Style

@conference{biosignals14,
author={F. J. Smith and D. W. Stewart},
title={Robot and Insect Navigation by Polarized Skylight},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={183-188},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004792101830188},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Robot and Insect Navigation by Polarized Skylight
SN - 978-989-758-011-6
AU - Smith F.
AU - Stewart D.
PY - 2014
SP - 183
EP - 188
DO - 10.5220/0004792101830188