Precise 3D Deep Brain Stimulation Electrode Location based on Multimodal Neuroimage Fusion

Nádia Moreira da Silva, Verena E. Rozanski, Sérgio Neves Tafula, João Paulo Silva Cunha

2014

Abstract

The success of neurosurgery strongly depends on the pre-neurosurgical evaluation phase, in which the delineation of the areas to be removed or to be stimulated must be very accurate. For patients undergoing Deep Brain Stimulation (DBS) it is vital the delineation of the target area prior to surgery, and after the implantation of the DBS lead to confirm the electrodes positioning. In this paper we present a system to accurately determine the 3D position of DBS electrodes implanted within the brain of Parkinson and Dystonia patients. The system was tested using a multimodal dataset from 16 patients (8 with Parkinson`s disease and 8 with dystonia) and, on average, the differences between the detected electrodes positions and the ones estimated manually by an experienced physician were less than a voxel in all cases.

References

  1. Bardinet E., Bhattacharjee M., Dormont D., Pidoux B., Malandain G., Schüpbach M., Ayache N., Cornu P., Agid Y., Yelnik J., 2009. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg., 110(2):208-219.
  2. Cahill N. D., 2010. Normalized measures of mutual information with general definitions of entropy for multimodal image registration. In WBIR'10 Proceedings of the 4th international conference on Biomedical image registration, pages 258-268. Springer-Verlag.
  3. Guo S., Zhuang P., Hallett M., Zheng Z., Zhang Y., Li J., Li Y., 2013. Subthalamic deep brain stimulation for Parkinson's disease: correlation between locations of oscillatory activity and optimal site of stimulation. Parkinsonism Relat Disord., 19 (1):109-14.
  4. Guridi J., Rodriguez-Oroz M. C., Lozano A. M., Moro E., Albanese A., Nuttin B., Gybels J., Ramos E., Obeso J. A., 2000. Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology, 55(12 Suppl 6):S21-8.
  5. Haegelen C., Coupé P., Fonov V., Guizard N., Jannin P., Morandi X., Collins D. L., 2013. Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson's disease. Int J Comput Assist Radiol Surg, 8(1):99-110.
  6. Hebb A. O., Miller K. J., 2010. Semi-automatic stereotactic coordinate identification algorithm for routine localization of Deep Brain Stimulation electrodes. J Neurosci Methods, 187(1):114-9.
  7. Hemm S., Coste J., Gabrillargues J., Ouchchane L., Sarry L., Caire F., Vassal F., Nuti C., Derost P., Durif F., Lemaire J. J., 2009 Contact position analysis of deep brain stimulation electrodes on post-operative CT images. Acta Neurochir (Wien), 151(7):823-9.
  8. Horn A., Schönecker T., Schneider G-H., Kühn A. A., 2013. Automatic reconstruction of DBS-Electrode Placement from post-operative MRI-images. Journal of Neural Transmission, 120:1137-1159.
  9. Jenkinson M., Smith S., 2001. A global optimisation method for robust affine registration of brain images. Med Image Anal., 5(2):143-56.
  10. Kupsch A., Kuehn A., Klaffke S., Meissner W., Harnack D., Winter C., Haelbig T. D., Kivi A., Arnold G., Einhäupl K. M., Schneider G. H., Trottenberg T., 2003. Deep brain stimulation in Dystonia. J Neurol 250 [Suppl 1]: I/47-I/52.
  11. Lalys F, Haegelen C, Ferre JC, El-Ganaoui O, Jannin P., 2010. Construction and assessment of a 3-T MRI brain template. Neuroimage, 49(1):345-354.
  12. Lalys F., Haegelen C., D'albis T., Jannin P., 2013. Analysis of electrode deformations in deep brain stimulation surgery. Int J Comput Assist Radiol Surg.
  13. Lozano A. M., Mahant N., 2004. Deep brain stimulation surgery for Parkinson's disease: mechanisms and consequences. Parkinsonism Relat Disord, 10, Suppl 1:S49-57.
  14. Pollo C., Villemure J.G., Vingerhoets F., Ghika J., Maeder P., Meuli R., 2004. Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien), 146(2):161-4.
  15. Rozanski V. E., Vollmar C., Cunha J. P., Tafula S. M. N., A. S.-A., Patzig M., Mehrkens J. H., Bötzel K., 2013. Connectivity patterns of pallidal DBS electrodes in focal Dystonia: a diffusion tensor tractography study. Neuroimage, 84: 435-442.
  16. Singh A., Kammermeier S., Mehrkens J. H., Bötzel K., 2012. Movement kinematic after deep brain stimulation associated microlesions. J. Neurol Neurosurg Psychiatry, 83(10):1022-6.
  17. Stolze H., Klebe S., Baecker C., Zechlin C., Friege L., Pohle S., Deuschl G., 2005. Prevalence of gait disorders in hospitalized neurological patients. Movement Disorders, 20(1):89-94.
  18. Thani N. B., Bala A., Swann G. B., Lind C. R., 2011. Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery, 69(1):207- 14.
  19. Ulla M., Thobois S., Llorca P. M., Derost P., Lemaire J. J., Chereau-Boudet I., de Chazeron I., Schmitt A., Ballanger B., Broussolle E., Durif F., 2011. Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson's disease: clinical, anatomical and functional imaging study. J Neurol Neurosurg Psychiatry, 82(6):607-14.
  20. Videen T. O., Campbell M. C., Tabbal S. D., Karimi M., Hershey T., Perlmutter J. S., 2008. Validation of a fiducial-based atlas localization method for deep brain stimulation contacts in the area of the subthalamic nucleus. Journal of Neuroscience Methods, 168:275- 281.
  21. Zonenshayn M., Sterio D, Kelly P. J., Rezai A. R., Beric A., 2004. Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease. Surg Neurol., 62(3):216-25.
Download


Paper Citation


in Harvard Style

Moreira da Silva N., E. Rozanski V., Neves Tafula S. and Silva Cunha J. (2014). Precise 3D Deep Brain Stimulation Electrode Location based on Multimodal Neuroimage Fusion . In Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS, ISBN 978-989-758-006-2, pages 48-54. DOI: 10.5220/0004727700480054


in Bibtex Style

@conference{phycs14,
author={Nádia Moreira da Silva and Verena E. Rozanski and Sérgio Neves Tafula and João Paulo Silva Cunha},
title={Precise 3D Deep Brain Stimulation Electrode Location based on Multimodal Neuroimage Fusion},
booktitle={Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,},
year={2014},
pages={48-54},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004727700480054},
isbn={978-989-758-006-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,
TI - Precise 3D Deep Brain Stimulation Electrode Location based on Multimodal Neuroimage Fusion
SN - 978-989-758-006-2
AU - Moreira da Silva N.
AU - E. Rozanski V.
AU - Neves Tafula S.
AU - Silva Cunha J.
PY - 2014
SP - 48
EP - 54
DO - 10.5220/0004727700480054