Nonlinear Modeling and Parameter Identification of Dynamic Friction Model in Tendon Sheath for Flexible Endoscopic Systems

T. N. Do, T. Tjahjowidodo, M. W. S. Lau, S. J. Phee

2013

Abstract

Minimally Invasive Surgery (MIS) has established a revolution in surgical communities, with its many advantages over open surgery. The need of more simplicity and high maneuverability makes the tendon sheath a very suitable mechanism in flexible endoscopic systems. Due to the restriction on size constraints and sterilization problems, traditional sensors cannot be mounted on the tool tips of a slave manipulator. Moreover, in the presence of nonlinear friction and hysteresis between the tendon and the sheath, it is extremely difficult to control the precise motion and sense the force during the operation. This paper proposes a new dynamic friction model to estimate the force at the end effector for the tendon sheath mechanism. The proposed friction model can adapt with any initial pretension of the tendon and any configuration of the sheath. The nonlinearities in both sliding and presliding regimes can be captured by using an internal state variable and functions dependent velocity and acceleration. A specific setup has been designed in order to measure the friction force between the tendon and the sheath. Finally, the validity of the identified model is confirmed by a good agreement of its prediction and experimental data.

References

  1. Agrawal, V., Peine , W. J., et al. (2010). "Modeling of Transmission Characteristics Across a Cable-Conduit System." Robotics, IEEE Transactions on 26(5): 914- 924.
  2. Agrawal, V., Peine, W. J. , et al. (2008). "Modeling of a closed loop cable-conduit transmission system".in Proc. IEEE Int. Conf. Robot. Autom.,Pasadena, CA, pp. 3407-3412.
  3. Al-Bender, F., Lampaert, V., et al. (2005). "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation." Automatic Control, IEEE Transactions on 50(11): 1883-1887.
  4. Armstrong-Hélouvry, B., Dupont , P., et al. (1994). "A survey of models, analysis tools and compensation methods for the control of machines with friction." Automatica 30(7): 1083-1138.
  5. Bodner, J., Wykypiel , H., et al. (2004). "First experiences with the da Vinci™ operating robot in thoracic surgery." European Journal of Cardio-Thoracic Surgery 25(5): 844-851.
  6. Canudas de Wit, C., Olsson , H., et al. (1995). "A new model for control of systems with friction." Automatic Control, IEEE Transactions on 40(3): 419-425.
  7. Dahl, P. R. (1968). "A solid friction model." Aerospace Corp. El Segundo CA: 31.
  8. Förster, R., Storck , M., et al. (2002). "Thoracoscopy versus thoracotomy: a prospective comparison of trauma and quality of life." Langenbeck's Archives of Surgery 387(1): 32-36.
  9. Kaneko, M., Wada , M., et al. (1991). "A new consideration on tendon-tension control system of robot hands. " in Proc. Int. Conf. Robot. Autom., vol. 2, Kyoto, Japan, pp. 1028-1033.
  10. Kaneko, M., Yamashita , T., et al. (1991). "Basic considerations on transmission characteristics for tendon drive robots. " in Proc. Int. Conf. Adv. Robot., vol. 1, Pisa, Italy, pp. 827-832.
  11. Mitchell, M. (1996). Introduction to Genetic Algorithms, MIT Press.
  12. Nagahiro, I., Andou , A., et al. (2001). "Pulmonary function, postoperative pain, and serum cytokine level after lobectomy: a comparison of VATS and conventional procedure." The Annals of Thoracic Surgery 72(2): 362-365.
  13. Palli, G., Borghesan , G., et al. (2009). "Tendon-based transmission systems for robotic devices: Models and control algorithms. " in Proc. Int. Conf. Robot. Autom., Kobe, Japan, pp. 4063-4068.
  14. Palli, G., Borghesan , G., et al. (2012). "Modeling, Identification, and Control of Tendon-Based Actuation Systems." Robotics, IEEE Transactions on 28(2): 277- 290.
  15. Palli, G. and Melchiorri , C. (2006). "Model and control of tendon-sheath transmission systems. " in Proc. Int. Conf. Robot. Autom., Orlando, FL, pp. 988-993.
  16. Phee, S. J., Low , S. C., et al. (2010). "Tendon sheath analysis for estimation of distal end force and elongation for sensorless distal end." Robotica 28(07): 1073-1082.
  17. Wojewoda, J., Stefanski , A., et al. (2008). "Hysteretic effects of dry friction: modelling and experimental studies." Philosophical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences) 366(1866): 747-765.
Download


Paper Citation


in Harvard Style

N. Do T., Tjahjowidodo T., W. S. Lau M. and J. Phee S. (2013). Nonlinear Modeling and Parameter Identification of Dynamic Friction Model in Tendon Sheath for Flexible Endoscopic Systems . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 5-10. DOI: 10.5220/0004409800050010


in Bibtex Style

@conference{icinco13,
author={T. N. Do and T. Tjahjowidodo and M. W. S. Lau and S. J. Phee},
title={Nonlinear Modeling and Parameter Identification of Dynamic Friction Model in Tendon Sheath for Flexible Endoscopic Systems},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={5-10},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004409800050010},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Nonlinear Modeling and Parameter Identification of Dynamic Friction Model in Tendon Sheath for Flexible Endoscopic Systems
SN - 978-989-8565-71-6
AU - N. Do T.
AU - Tjahjowidodo T.
AU - W. S. Lau M.
AU - J. Phee S.
PY - 2013
SP - 5
EP - 10
DO - 10.5220/0004409800050010