Adaptive Smoothing Applied to fMRI Data

M. Bartés-Serrallonga, J. M. Serra-Grabulosa, A. Adan, C. Falcón, N. Bargalló, J. Solé-Casals

2012

Abstract

One problem of fMRI images is that they include some noise coming from many other sources like the heart beat, breathing and head motion artifacts. All these sources degrade the data and can cause wrong results in the statistical analysis. In order to reduce as much as possible the amount of noise and to improve signal detection, the fMRI data is spatially smoothed prior to the analysis. The most common and standardized method to do this task is by using a Gaussian filter. The principal problem of this method is that some regions may be under-smoothed, while others may be over-smoothed. This is caused by the fact that the extent of smoothing is chosen independently of the data and is assumed to be equal across the image. To avoid these problems, we suggest in our work to use an adaptive Wiener filter which smooths the images adaptively, performing a little smoothing where variance is large and more smoothing where the variance is small. In general, the results that we obtained with the adaptive filter are better than those obtained with the Gaussian kernel. In this paper we compare the effects of the smoothing with a Gaussian kernel and with an adaptive Wiener filter, in order to demonstrate the benefits of the proposed approach.

References

  1. Adan, A., Serra-Grabulosa, J.M., 2010. Effects of caffeine and glucose, alone and combined, on cognitive performance. Human Psychopharmacology clinical and experimental, 25 (4), 310 - 317.
  2. Bartés-Serrallonga, M., Solé-Casals, J., Adan, A., Falcon C., Bargallo, N., and Serra-Grabulosa, J. M., 2011. Statistical analysis of functional MRI data using independent component analysis. International conference on neural computation theory and applications. 430 - 436.
  3. Calhoun, V. D., Adali, T., Pearlson, G. D. and Pekar, J. J., 2001. A Method for Making Group Inferences From Functional MRI Data Using Independent Component Analysis. Human Brain Mapping, 14, 140 - 151.
  4. Calhoun, V. D., Adali, T., Pearlson,G. D., 2004. Independent component analysis applied to fMRI data: a generative model for validating results. The Journal of VLSI Signal Processing, 37, 281 - 291.
  5. Cornblatt, B.A., Lezenweger, M.F., Erlenmeyer-Kimling, L., 1989. The Continuous Performance Test, Identical Pairs Version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research, 29, 65 - 85.
  6. D'Esposito, M., Zarahn, E., Aguirre, G. K., 1999. EventRelated functional MRI: implications for cognitive Psychology. Psychological Bulletin, 125, 155 - 64.
  7. Lim, J. S., 1990. Two-Dimensional Signal and Image Processing. Prentice Hall.
  8. Lindquist, M. and Wager, T., 2008. Spatial smoothing in fmri using prolate spheroidal wave functions. Human Brain mapping, 29, 1276 - 1287.
  9. Poline, J. and Mazoyer, B. 1994. Analysis of individual brain activation maps using hierarchical description and multiscale detection. IEEE Transactions in Medical Imaging, 4, 702 - 710.
  10. Serra-Grabulosa J. M, Adan A, Falcon C, Bargallo N, 2010a Glucose and caffeine effects on sustained attention: an exploratory fMRI study. Human Psychopharmacology clinical and experimental 25 (7- 8), 543 - 552
  11. Shafie, K., Sigal, B., Siegmund, D., and Worsley, K., 2003. Rotation space random fields with an application to fmri data. Annals of Statistics, 31, 1732 - 1771.
  12. Tabelow, K., Polzehl, J., Voss, H. U., Spokoiny, V., 2006. Analyzing fMRI experiments with structural adaptive smoothing procedures. NeuroImage, 33, 55 -62.
  13. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and Joliot, M., 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273 - 289.
  14. Van De Ville, D., Blu, T., and Unser, M., 2006. Surfing the brain: An overview of wavelet-based techniques for fmri data analysis. IEEE Engineering in Medicine and Biology Magazine, 25, 65 - 78. .
  15. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., and Evans, A. C., 1996. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58 - 73.
  16. Yoo, S. S., Paralkar, G., Panych, L. P., 2004. Neural substrates associated with the concurrent performance of dual working memory tasks. The international journal of neuroscience. 114(6), 613 - 31.
  17. Yue, Y., Loh, J.M., Lindquist, M.A., 2010. Adaptive spatial smoothing of fMRI images. Statistics and Its Interface, 3, 3 - 13.
Download


Paper Citation


in Harvard Style

Bartés-Serrallonga M., M. Serra-Grabulosa J., Adan A., Falcón C., Bargalló N. and Solé-Casals J. (2012). Adaptive Smoothing Applied to fMRI Data . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 677-683. DOI: 10.5220/0004182306770683


in Bibtex Style

@conference{sscn12,
author={M. Bartés-Serrallonga and J. M. Serra-Grabulosa and A. Adan and C. Falcón and N. Bargalló and J. Solé-Casals},
title={Adaptive Smoothing Applied to fMRI Data},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2012)},
year={2012},
pages={677-683},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004182306770683},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2012)
TI - Adaptive Smoothing Applied to fMRI Data
SN - 978-989-8565-33-4
AU - Bartés-Serrallonga M.
AU - M. Serra-Grabulosa J.
AU - Adan A.
AU - Falcón C.
AU - Bargalló N.
AU - Solé-Casals J.
PY - 2012
SP - 677
EP - 683
DO - 10.5220/0004182306770683