Intelligent Decision Support using Pattern Matching

Jim Austin, Tom Jackson, Victoria J. Hodge


The aim of our work is to develop Intelligent Decision Support (IDS) tools and techniques to convert traffic data into intelligence to assist network managers, operators and to aid the travelling public. The IDS system detects traffic problems, identifies the likely cause and recommends suitable interventions which are most likely to mitigate congestion of that traffic problem. In this paper, we propose to extend the existing tools to include dynamic hierarchical and distributed processing; algorithm optimisation using natural computation techniques; and, using a meta-learner to short-circuit the optimisation by learning the best settings for specific data set characteristics and using these settings to initialise the GA.


  1. Hodge, V., Krishnan, R., Austin, J. and Polak, J. (2010). A computationally efficient method for online identification of traffic incidents and network equipment failures. Presented at, Transport Science and Technology Congress: TRANSTEC 2010, Delhi, Apr. 4-7, 2010.
  2. Hodge, V., Krishnan, R., Jackson, T., Austin, J. and Polak, J. (2011). Short-Term Traffic Prediction Using a Binary Neural Network. Presented at, 43rd Annual UTSG Conference, Open University, Milton Keynes, UK, Jan. 5-7, 2011.
  3. Krishnan, R., Hodge, V., Austin, J. and Polak, J. (2010a). A Computationally Efficient Method for Online Identification of Traffic Control Intervention Measures. Presented at, 42nd Annual UTSG Conference, University of Plymouth, UK: Jan. 5-7, 2010.
  4. Krishnan, R., Hodge, V., Austin, J., Polak, J. and Lee, T-C. (2010b). On Identifying Spatial Traffic Patterns using Advanced Pattern Matching Techniques. In, Proceedings of Transportation Research Board (TRB) 89th Annual Meeting, Washington, D.C., Jan. 10-14, 2010. (DVD-ROM: Compendium of Papers).
  5. Krishnan, R., Hodge, V., Austin, J., Polak, J., Jackson, T., Smith, M. and Lee, T-C. (2010c). Decision Support for Traffic Management. In, Proceedings of 17th ITS World Congress: (CD-ROM), Busan: Korea, Oct. 25-29, 2010.
  6. Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Trans. Inform. Theory, 13(1):21-27.
  7. Fix, E. and Hodges, J. L. (1951). Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine, Randolph Field, Texas.
  8. Hodge, V. and Austin, J. (2005). A Binary Neural k-Nearest Neighbour Technique. Knowledge and Information Systems, 8(3): pp. 276-292, Springer-Verlag London Ltd, 2005.
  9. Hodge, V., Lees, K. and Austin, J. (2004). A High Performance k-NN Approach Using Binary Neural Networks. Neural Networks, 17(3): pp. 441-458, Elsevier Science, 2004.
  10. Hodge, V. and Austin, J. (2001). An Evaluation of Standard Retrieval Algorithms and a Binary Neural Approach. Neural Networks, 14(3): pp. 287-303, Elsevier Science.
  11. Weeks, M., Hodge, V., O'Keefe, S., Austin, J. and Lees, K. (2003). Improved AURA kNearest Neighbour Approach. In, Proceedings of IWANN-2003, Mahon, Spain. June 3-6, 2003. Lecture Notes in Computer Science (LNCS) 2687, Springer Verlag, Berlin.
  12. Bubeck, S. and von Luxburg, U. (2009). Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions. Journal of Machine Learning Research, 10(10): 657-698.
  13. Hodge, V. and Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22: pp. 85-126, Kluwer Academic Publishers.
  14. Hodge, V. (2011). Outlier and Anomaly Detection: A Survey of Outlier and Anomaly Detection Methods. Lambert Academic Publishing (LAP), ISBN-13: 978-3846548226
  15. AURA -- Advanced Computer Architectures Group web page (accessed 15/12/11) http://
  16. Weeks, M., Hodge, V. and Austin, J. (2002). A Hardware Accelerated Novel IR System. In, Proceedings of the 10th Euromicro Workshop (PDP-2002), Las Palmas de Gran Canaria, Canary Islands, Jan. 9-11, 2002. IEEE Computer Society, CA.
  17. Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B. and Pasley, A. (2005). DAME: Searching Large Data Sets within a Grid-Enabled Engineering Application. Proceedings IEEE - Special Issue on Grid Computing, 93(3): 496-509, ISBN 0018-9219
  18. Shvachko, K., Hairong K., Radia, S. and Chansler, R. (2010). The Hadoop Distributed File Store System. In, Proceedings of 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 28 June 2010.
  19. SDSC Storage Request Broker [Online] (accessed 15/12/11). Available: http://
  20. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning Addison-Wesley Pub. Co. ISBN: 0201157675
  21. Holland, J.H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press.
  22. Brazdil, P. B., Soares, C. and Da Costa, J.P. (2003). Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning, 50(3): 251-277.

Paper Citation

in Harvard Style

Hodge V., Jackson T. and Austin J. (2011). Intelligent Decision Support using Pattern Matching . In Proceedings of the 1st International Workshop on Future Internet Applications for Traffic Surveillance and Management - Volume 1: FIATS-M, ISBN 978-989-8425-87-4, pages 44-54. DOI: 10.5220/0004473000440054

in Bibtex Style

author={Victoria J. Hodge and Tom Jackson and Jim Austin},
title={Intelligent Decision Support using Pattern Matching},
booktitle={Proceedings of the 1st International Workshop on Future Internet Applications for Traffic Surveillance and Management - Volume 1: FIATS-M,},

in EndNote Style

JO - Proceedings of the 1st International Workshop on Future Internet Applications for Traffic Surveillance and Management - Volume 1: FIATS-M,
TI - Intelligent Decision Support using Pattern Matching
SN - 978-989-8425-87-4
AU - Hodge V.
AU - Jackson T.
AU - Austin J.
PY - 2011
SP - 44
EP - 54
DO - 10.5220/0004473000440054