EFFECTIVE SELECTION OF ELECTRODE SUBSETS IN BCI EXPERIMENTS

Andrey Eliseyev, Cecile Moro, Jean Faber, Alexander Wyss, Napoleon Torres, Corinne Mestais, Tetiana Aksenova, Alim-Louis Benabid

Abstract

Recently N-way Partial Least Squares (NPLS) were reported as an effective tool for neuronal signal decoding and BCI system calibration. This method simultaneously analyses data in several domains. It is based on the projection of a data tensor to a low dimensional space using all variables to create a final model. In the present paper the L1-Penalized NPLS is proposed for sparse BCI system calibration allowing to combine the projection technique with an effective selection of subset of features. The L1-Penalized NPLS was applied for binary self-paced BCI system calibration providing a subset of electrodes selection. Our BCI system is designed for animal research in particular for research in non-human primates.

References

  1. Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716- 723.
  2. Bashashati, A., Ward, R. K., Birch, G.E., 2007. Towards development of a 3-state self-paced brain computer interface. J. Computational Intelligence & Neuroscience, 84386.
  3. Bro, R., 1996. Multiway calibration. multilinear pls. J. Chemom., 10, 47-61.
  4. Chapin, J. K., Moxon, K. A., Markowitz, R. S., Nicolelis, M.A., 1999. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature America Inc.
  5. Cook, R. D., Weisberg, S., 1982. Residuals and Influence in Regression. London: Chapman and Hall.
  6. Devijver, P. A., Kittler, J., 1982. Pattern Recognition: A Statistical Approach. Prentice-Hall, London, 1982.
  7. Eliseyev, A., Moro, C., Costecalde, T., Torres, N., Gharbi, S., Mestais, C., Benabid, A.L., Aksenova, T., 2011. Iterative N-way PLS for self-paced BCI in freely moving animals. Journal of Neural Engineering, 8, 046012.
  8. Fatourechi, M., Ward, R. K., Birch, G. E., 2008. A selfpaced brain-computer interface system with a low false positive rate. J Neural Eng 5:9-23. doi:10.1088/1741-2560/5/1/002.
  9. Geladi, P., Kowalski, B. R., 1986. Partial least-squares regression: a tutorial. Anal. Chim. Acta. 185, 1-17.
  10. Golub, G., Heath, M., Wahba, G., 1979. Generalization cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223.
  11. Kolda, T. G., Bader, B. W., 2007. Tensor Decompositions and applications. Sandia report, SAND2007-6702.
  12. Land, S., Friedman, J., 1996. Variable fusion: a new method of adaptive signal regression. Technical Report. Department of Statistics, Stanford University, Stanford.
  13. Leeb, R., Settgast, V., Fellner, D. W., Pfurtscheller, G., 2007. Self-paced exploring of the Austrian National Library through thoughts. International Journal of Bioelectromagnetism, 9, 237-244.
  14. Leuthardt E. C., Schalk G., Wolpaw J. R., Ojemann J.G., Moran D. W., 2004. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 1(2): 63-71.
  15. Mørup, M., Hansen, L. K., Arnfred, S. M., 2008. Algorithms for Sparse Nonnegative Tucker Decomposition. Neural Computation, 20, 2112-2131.
  16. Müller-Putz, G. R., Kaiser, V., Solis-Escalante, T., Pfurtscheller, G., 2010. Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. International Federation for Medical and Biological Engineering 2010, 10.1007/s11517-009-0572-7.
  17. Nazarpour, K., Sanei, S., Shoker, L., Chambers, J. A., 2006. Parallel space-time-frequency decomposition of eeg signals for brain computer interfacing. EUSIPCO 2006.
  18. Qian, K., Nikolov, P., Huang, D., Fei, D. Y., Chen, X., Bai, O, 2010. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test. Clinical Neurophysiology, 121, 1303-1313.
  19. Rakotomamonjy, A., Guigue, V., Mallet, G., Alvarado, V., 2005. Ensemble of SVMs for improving brain computer interface P300 speller performances. In International Conference on Artificial Neural Networks.
  20. Scherer, R., Lee, F., Schlögl, A., Leeb, R., Bischof, H., Pfurtscheller, G., 2008. Toward self-paced braincomputer communication: navigation through virtual worlds. IEEE Transactions on Biomedical Engineering, 55, 675-682.
  21. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G., 2005. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering 2(4): L14-L22.
  22. Schmidt, M., 2005. Least Squares Optimization with L1- Norm Regularization. Cs542B Project Report, December 2005.
  23. Schwartz, G., 1978. Estimating the dimension of a model. Ann. Statist. 6, 461-464.
  24. Sherwood, J., Derakhshani, R., 2009. On Classifiability of Wavelet Features for EEG-Based Brain-Computer Interfaces. Proceedings of the 2009 international joint conference on Neural Networks, 2508-2515.
  25. Shevade, S. K., Keerthi, S.S., 2003. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17), 2246-2253.
  26. Tibshirani, R., 1996. Regression shrinkage and variable selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
  27. Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A., 2009. Time domain parameters as a feature for EEG-based brain computer interfaces. Neural Networks, 22, 1313-1319.
  28. Wessberg J., Stambaugh C. R., Kralik J. D., Beck P. D., Laubach M., Chapin J. K., Kim J., Biggs S.J., Srinivasan M. A., Nicolelis M. A., 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810), 361-365.
  29. Wolpaw, J. R., Birbaumerc, N., McFarlanda, D. J., Pfurtschellere, G., Vaughana, T. M., 2002. Braincomputer interfaces for communication and control. Clin. Neurophysiol., 113, 767-791.
  30. Yates, F., 1933. The analysis of replicated experiments when the field results are incomplete. The empire journal of experimental agriculture, 1, 129.
  31. Zhao, Q., Caiafa, C.F., Cichocki, A., Zhang, L., Phan, A. H., 2009. Slice Oriented Tensor Decomposition of EEG Data for Feature Extraction in Space, Frequency and Time Domains. Lecture Notes in Computer Science, 5863, 221-228.
  32. Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-320.
Download


Paper Citation


in Harvard Style

Eliseyev A., Moro C., Faber J., Wyss A., Torres N., Mestais C., Aksenova T. and Benabid A. (2011). EFFECTIVE SELECTION OF ELECTRODE SUBSETS IN BCI EXPERIMENTS . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: Special Session on Challenges in Neuroengineering, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 437-443. DOI: 10.5220/0003724304370443


in Bibtex Style

@conference{special session on challenges in neuroengineering11,
author={Andrey Eliseyev and Cecile Moro and Jean Faber and Alexander Wyss and Napoleon Torres and Corinne Mestais and Tetiana Aksenova and Alim-Louis Benabid},
title={EFFECTIVE SELECTION OF ELECTRODE SUBSETS IN BCI EXPERIMENTS},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: Special Session on Challenges in Neuroengineering, (IJCCI 2011)},
year={2011},
pages={437-443},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003724304370443},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: Special Session on Challenges in Neuroengineering, (IJCCI 2011)
TI - EFFECTIVE SELECTION OF ELECTRODE SUBSETS IN BCI EXPERIMENTS
SN - 978-989-8425-84-3
AU - Eliseyev A.
AU - Moro C.
AU - Faber J.
AU - Wyss A.
AU - Torres N.
AU - Mestais C.
AU - Aksenova T.
AU - Benabid A.
PY - 2011
SP - 437
EP - 443
DO - 10.5220/0003724304370443