INTEGRATION OF PROFILE IN OLAP SYSTEMS

Rezoug Nachida, Omar Boussaid, Fahima Nader

Abstract

OLAP systems facilitate analysis by providing a multidimensional data space which decision makers explore interactively by a succession of OLAP operations. However, these systems are developed for a group of decision makers or topic analysis "subject-oriented", which are presumed, have identical needs. It makes them unsuitable for a particular use. Personalization aims to better take into account the user; first this paper presents a summary of all work undertaken in this direction with a comparative study. Secondly we developed a search algorithm for class association rules between query type and user (s) to deduce the profile of a particular user or a user set in the same category. These will be extracted from the log data file of OLAP server. For this we use a variant of prediction and explanation algorithms. These profiles then form a knowledge base. This knowledge base will be used to generate automatically a rule base (ACE), for assigning weights to the attributes of data warehouses by type of query and user preferences. More it will deduce the best contextual sequence of requests for eventual use in a recommended system.

References

  1. Agrawal R., Srikant, R., 1994. Fast algorithms for mining association rules”. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499. Morgan Kaufmann, 12-15.
  2. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D. 2005. A personalization framework for OLAP queries. In DOLAP'05: Proceedings of the 8th ACM internationalworkshop on Data warehousing and OLAP, 9-18, New York, NY, USA. ACM.
  3. Bouzeghoub, M., Kostadinov, D. 2005. Personnalisation de l'information : aperçu de l'état de l'art et définition d'un modèle flexible de profils, CORIA'05, pp. 201- 218.
  4. Bentayeb, F., Boussaid, O., Favre,C,. Ravat,F,. Teste, O.2009. Personnalisation dans les entrepôts de données : bilan et perspectives, 5eme journées sur les Entrepôts de Données et l'Analyse en ligne (EDA'09), Revue des Nouvelles Technologies de l'Information, RNTI-B-5, Cepadues Editions.
  5. Cabanac, G., Chevalier, M., Ravat, F., Teste. O. 2007. An annotation management system for multidimensional databases. In I. Y. Song, J. Eder, and T. M. Nguyen, editors, DaWaK, (volume 4654 of Lecture Notes in Computer Science), 89-98. Springer.
  6. Espil, M., Vaisman, A. 2001. Efficient Intentional Redefinition of Aggregation Hierarchies in Multidimensional Databases.DOLAP'01, pp. 1-8.
  7. Favre, C., Bentayeb, F., Boussaid, O., 2007, Evolution et personnalisation des analyses dans les entrepôts de données: une approche orientée utilisateur, INFORSID'07, pp. 308-323.
  8. Garrigôs, I., Pardillo, J., Mazôn, J., Trujillo, J. 2009. Conceptual Modeling Approach for OLAP Personalization. A. H. F. Laender et al. SpringerVerlag Berlin Heidelberg (20, 2009). 401-414.
  9. Garrigós, I., Gómez, J. 2006. Modeling User Behaviour Aware WebSites with PRML. In Proceedings of the CAISE'06 (Third International Workshop on Web Information Systems Modeling: WISM 7806)).
  10. Giacometti, A., Marcel, P., Negre, E. 2008. A Framework for Recommending OLAPQueries. In: DOLAP 08. 73-80.
  11. Giacometti, P., Marcel, E., Negre, Soulet. 2009. A. Query Recommendations for OLAP Discovery Driven Analysis. In Proceedings of 12th ACM International Workshop on Data Warehousing and OLAP : DOLAP'09, Hong Kong.
  12. Golfarelli, S., Rizzi, S. 2009. Expressing OLAP Preferences. Berlin/ Heidelberg, LNCS, (vol. 5566/2009, Scientific and Statistical Database Management, 2009), 83-91.
  13. Jerbi, H., Ravat, F., Teste, O., Zurfluh,G. 2008 Management of context-aware preferences in multidimensional databases , 3rd International Conference on Digital Information Management (ICDIM'08), IEEE, p.669-675, Londres (UK), novembre 2008.
  14. Jerbi, H., Ravat, F., Teste, O., 2009. Applying Recommandation Technology in Olap Systems Zurfluh. G. J. Filipe and J. Cordeiro (Eds.): ICEIS 2009, LNBIP 24, pp. 20- 233, 2009. SpringerVerlag Berlin Heidelberg.
  15. Korfhage, R. R. Information Storage and Retrieval.1997. JohnWiley & Sons.
  16. Kotsiantis,S., Kanellopoulos. D. 2006. Association Rules Mining : A recent overview 2006,GESTS International Transactions on Computer Science and Engineering, Vol.32 (1), pp. 71-82.
  17. Koutrika, G., Ioannidis, Y. 2008. Answering queries based on preference hierarchies. In Proc. VLDB, Auckland, (New Zealand 2008).
  18. Ioannidis, Y., Koutrika, G. 2005. Personalized Systems: Models and Methods from an IR and DB Perspective, VLDB'05, pp. 1365-1365.
  19. Mansmann, S., Scholl, M. H. 2007. Exploring OLAP Aggregates with Hierarchical Visualization Techniques. In Proceedings of 22nd Annual ACM Symposium on Applied Computing ((SAC'07), Multimedia & Visualization Track, March 2007, Seoul, Korea). 1067-1073.
  20. Mansmann, S., Scholl, M. H. 2008. Visual OLAP: A New Paradigm for Exploring Multidimensonal Aggregates”. In Proceedings of IADIS International Conference on Computer Graphics and Visualization, (MCCSIS'08: Amsterdam, The Netherlands, 24 - 26 July, 2008) 59-66.
  21. Ravat, F., Teste, O. 2009. Personalization and OLAP databases. In: Volume New Trends in DataWarehousing and Data Analysis of Annals of Information Systems, 71- 92. Springer, Heidelberg.
  22. Rizzi, S.2007 OLAP Preferences: a Research Agenda 10th International,Workshop on Data Warehousing and OLAP (DOLAP'07), ACM, pp.99-100, Lisbon (Portugal).
  23. Sapia, C., PROMISE: Predicting Query Behavior to Enable Predictive Caching Strategies for OLAP Systems DaWaK'00, LNCS 1874, pp. 224-233, Heidelberg (2000).
  24. Thalhammer, T., Schrefl, M. , Mohania, M. 2001. Active Data Warehouses: Complementing OLAP with Active Rules. Data & Knowledge Engineering, (vol. 39, issue 3, December, 2001, Elsevier Science).
  25. Xin, D., Han, J. 2008. P-cube: Answering preference queries in multi-dimensional space. In Proc. ICDE, (Canenn, Mexico, 2008, pp. 1092-1100).
  26. Zachman, J. A. 2003. The Zachman Framework: A Primer for Enterprise Engineering and Manufacturing. Zachman International.
  27. Zadeh. L. 1975. The concept of a linguistic variable and its application to approximate reasoning - ii. Information Sciences (Part 2), 8(4) :301-357.
Download


Paper Citation


in Harvard Style

Nachida R., Boussaid O. and Nader F. (2011). INTEGRATION OF PROFILE IN OLAP SYSTEMS . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 312-324. DOI: 10.5220/0003669103200332


in Bibtex Style

@conference{kdir11,
author={Rezoug Nachida and Omar Boussaid and Fahima Nader},
title={INTEGRATION OF PROFILE IN OLAP SYSTEMS},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},
year={2011},
pages={312-324},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003669103200332},
isbn={978-989-8425-79-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
TI - INTEGRATION OF PROFILE IN OLAP SYSTEMS
SN - 978-989-8425-79-9
AU - Nachida R.
AU - Boussaid O.
AU - Nader F.
PY - 2011
SP - 312
EP - 324
DO - 10.5220/0003669103200332