LINGUISTIC ENGINEERING AND ITS APPLICABILITY TO BUSINESS INTELLIGENCE - Towards an Integrated Framework

S. F. J. Otten, M. R. Spruit

Abstract

This paper investigates how linguistic techniques on unstructured text data can contribute to business intelligence processes. Through a literature study covering 99 relevant papers, we identified key business intelligence techniques such as text mining, social mining and opinion mining. The Linguistic Engineering for Business Intelligence (LEBI) framework incorporates these techniques and can be used as a guide or reference for combining techniques on unstructured and structured data.

References

  1. Adomavicius, G., & Tuzhilin, A. (2002). Using data mining methods to build customer profiles. Computer, 34(2), 74-82.
  2. Anderson, P. (2007). What is web 2.0. Ideas, technologies and implications for education, 60, 1-10.
  3. Chung, W., Chen, H., & Numumaker Jr, J. F. (2003). Business Intelligence Explorer: A knowledge map framework for discovering business intelligence on the Web. Proceedings of the 36th Annual Hawaii International Conference on System Sciences (pp. 1- 10). Honolulu, Hawaii, USA: IEEE.
  4. Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexiconbased approach to opinion mining. Proceedings of the international conference on Web search and web data mining (pp. 231-240). Stanford, California, United States of America: ACM.
  5. Erétéo, G., Buffa, M., Gandon, F., Grohan, P., Leitzelman, M., & Sander, P. (2008). A state of the art on social network analysis and its applications on a semantic web. Proceedings of the 7th International Semantic Web Conference (pp. 1-6). Karlsruhe, Germany: Citeseer.
  6. Feldman, R., & Dagan, I. (1995). Knowledge discovery in textual databases (KDT). Proceedings of the First International Conference on Knowledge Discovery and Data Mining (pp. 112-117). Montreal, Quebec, Canada: ACM.
  7. Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. New York: Cambridge University Press.
  8. Heer, J., & Boyd, D. (2005). Vizster: Visualizing online social networks. Proceedings of the 2005 IEEE Symposium on Information Visualization (pp. 1-5). Minneapolis, Minnesota, USA: IEEE Computer Society.
  9. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.
  10. Inmon, W. H. (2002). Building the Data Warehouse (3rd ed.). New York: Wiley.
  11. Kleinberg, J. (2008). The convergence of social and technological network. Communications of the ACM, 51(11), 66-72.
  12. Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71-82.
  13. Liu, B. (2007). Opinion Mining. In B. Lui, & B. Liu (Ed.), Web data mining: Exploring hyperlinks, contents, and usage data (pp. 411-447). Springer.
  14. Moody, D. L., & Kortink, M. A. (2000). From enterprise models to dimensional models: a methodology for data warehouse and data mart design. Proceedings of the Second International Workshop on Design and Management. 28, pp. 1-12. Stockholm, Sweden: Citeseer.
  15. och Dag, N., Regnell, B., Gervasi, V., & Brinkkemper, S. (2005). A linguistic-engineering approach to largescale requirements management. Software, IEEE, 22(1), 32-39.
  16. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1), 1-135.
  17. Parmenter, D. (2007). Key Performance Indicators. Hoboken, New Jersey, USA: John Wiley & Sons.
  18. Sen, A., & Sinha, A. P. (2005). A comparison of data warehousing methodologies. Communications of the ACM, 48(3), 79-84.
  19. Willen, C. (2002). Airborne opportunities. Intelligent Enterprise, 5(2), 11-12.
  20. Yang, W. S., & Dia, J. B. (2008). Discovering cohesive subgroups from social networks for targeted advertising. Expert Systems with Applications, 34(3), 2029-2038.
  21. Yang, W. S., Dia, J. B., Cheng, H. C., & Lin, H. T. (2006). Mining social networks for targeted advertising. Proceedings of the 39th Annual Hawaii International Conference on System Sciences (pp. 1-10). Honolulu, Hawaii, United States of America: IEEE.
Download


Paper Citation


in Harvard Style

Otten S. and Spruit M. (2011). LINGUISTIC ENGINEERING AND ITS APPLICABILITY TO BUSINESS INTELLIGENCE - Towards an Integrated Framework . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 452-456. DOI: 10.5220/0003661704600464


in Bibtex Style

@conference{kdir11,
author={S. F. J. Otten and M. R. Spruit},
title={LINGUISTIC ENGINEERING AND ITS APPLICABILITY TO BUSINESS INTELLIGENCE - Towards an Integrated Framework},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},
year={2011},
pages={452-456},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003661704600464},
isbn={978-989-8425-79-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
TI - LINGUISTIC ENGINEERING AND ITS APPLICABILITY TO BUSINESS INTELLIGENCE - Towards an Integrated Framework
SN - 978-989-8425-79-9
AU - Otten S.
AU - Spruit M.
PY - 2011
SP - 452
EP - 456
DO - 10.5220/0003661704600464