COULD TYRANNOSAURUS RUN FAST? - Mechanical Power Calculation for 15.7 m/s Tyrannosaurus Running

Yoshiyuki Usami

Abstract

Running ability of large bepidal theropod Tyrannosaurus is studied with the use of evolutionary computational method. In 2002 Hutchinson and Garcia published a paper titled as "Tyrannosaurus was not a fast runner" (Hutchinson and Garcia, 2002). They postulated an arbitrary mid-stance posture in running motion, and calculated required muscle mass of the hind limb. This method can not tell information on running speed, because it is a static method. Then, running speed of Tyrannosaurus could not be evaluated quantitatively. We accomplished numerical simulation to obtain whole running motion of Tyrannosaurus with the use of evolutionary computation method. As a result, we have obtained running motion of Tyrannosaurus in a speed of 15.7 m/s within allowed parameters range. We have discussed on mechanical power output of the running motion of Tyrannosaurus for the first time in this research area. As for a problem of the simulation algorithm, there is room to improve simple evolutionary computation method applied in the present work. Generally, a solution of evolutionary computation method falls into a local minimum. However, finding the global minimum of the evaluation function i.e., velocity and vertical acceleration are needed for this problem. Then, developing such an algorithm is left as the future problem.

References

  1. Alexander, R. Mc. N.,1976. Estimates of speeds of dinosaurs. Nature, vol. 261, p. 129-130.
  2. Alexander, R. Mc. N., 1985. Mechanics of posture and gait of some large dinosaurs, Zoological Journal of Linnean Society, vol. 83, p. 1-25.
  3. Alexander, R. Mc. N., 1989. The Dynamics of Dinosaurs and Other Extinct Giants, Columbia University Press, New York.
  4. Alexander, R. Mc. N., 1996. Tyrannosaurus on the run, Nature, vol. 379, p. 121-121.
  5. Alexander, R. Mc. N., 2006. Dinosaur biomechanics, Proceedings of the Royal Society, vol. B 273, p. 1849- 1855.
  6. Alexander, R. Mc. N. and Jayes, A. S., 1983: A dynamic similarity hypothesis for the gaits of quadrupedal mammals, Journal of Zoology, vol. 201, p. 135-152.
  7. Askew, G. N., March, R.L. and Ellington C, P., 2001a: The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during takeoff. Journal of Experimental Biology, vol. 204, p.3601-3619.
  8. Askew, G. N. and Marsh, R.L., 2001b: The mechanical power output of the pectoralis muscle of blue-breated quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance. Journal of Experimental Biology, vol. 204, p. 3587-3600.
  9. Bakker, R. T., 1986: Dinosaur Heresies. William Morrow, New York.
  10. Bates, K. T., Manning, P. L., Hodgetts, D. and Sellers, W. I., 2009: Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling, PLoS ONE, 4 (2): e4532 doi:10.1371/ journal.pone.0004532.
  11. Day, J. J., Norman, D. B., Upchurch, P. and Powell, H. P., 2002: Dinosaur locomotion from a new trackway, Nature, vol. 415, p. 494-495.
  12. Dial, K. P. and Biewener, A. A. 1993. Pectorialis muscle force and power output during different modes of flight in pigeons (Columba livia), Journal of Experimental Biology 176: 31-54.
  13. Farlow, J. O., 1981: Estimates of dinosaur speeds from a new trackway site in Texas, Nature, vol. 294, p. 747- 748.
  14. Fogel, D. B., 1995. Evolutionary Computation, Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ.
  15. Fraser, A., 1970: Computer Models in Genetics, McGrawHill , Donald Burnell, New York.
  16. Fraser, A. 1970. Computer Models in Genetics, McGrawHill , Donald Burnell, New York, 192pp.
  17. Gatesy, S. M., Baker, M. and Hutchinson, J. R., 2009. Constraint-Based Exclusion of Limb Poses for Reconstructing Theropod Dinosaur Locomotion, Journal of vertebrate paleontology, Vol. 29. p. 535- 544. Gatesy, S. M. and Biewener, A. A. 1991. Bipedal locomotion: effects of speed, size and limb posture in birds and humans, Journal of Zoology, London 224: 127-147.
  18. Goldberg, D. E., 1989: Genetic algorithms in search, optimization and machine learning, Addison Wesley.
  19. Gray, J. 1936. Studies in animal locomotion. VI. The propulsive powers of the dolphin, Journal of Experimental Biology 13:192-199.
  20. Holland, J. H., 1975. Adaptation in natural and artificial systems, University of Michigan Press.
  21. Hutchinson, J. R., 2004a. Biomechanical modeling and sensitivity analysis of bipedal running. I. Extant Taxa. Journal of Morphology, vol. 262, p. 421-440.
  22. Hutchinson, J. R., 2004b. Biomechanical modeling and sensitivity analyis of bipedal running ability. II. Extinct taxa, Journal of morphology, vol. 262, p. 441- 461.
  23. Hutchinson, J. R. and Garcia, M., 2002: Tyrannosaurus was not a fast runne, Nature, vol. 415, p. 1018-1021.
  24. Hutchinson, J. R. Ng-Thow-Hing, V. and Anderson, F. C., 2007: A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex., Journal of theoretical biology., vol. 246, p. 660- 680.
  25. James, R. S., Atringham, J. D. and Goldspink, D. F. 1995. The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function, Journal of Experimental Biology 198: 491- 502.
  26. James, R. S. and Wilson, R. S. 2008. Explosive Jumping: Extreme Morphological and Physiological Specializations of Australian Rocket Frogs (Litoria nasuta), Physiological and Biochemical Zoology 81: 176-185.
  27. Lännergren, J.,Lindblom, P. and Johansson, B. 1982. Contractile properties of two varieties of twitch muscle fibtres in Xenopus laevis. Acta Physiologica Scandinavica. 114: 523-535.
  28. Lappin, A. K., Monroy, J. A., Pilarski, J. Q., Zepnewski, E. D., Pierotti, D. J. and Nishikawa, K. C. 2006. Storage and recovery of elastic potential energy powers ballistic prey capture in toads. Journal of Experimental Biology 209: 2535-2553.
  29. Marsh, R. L. and John-Alder, H. B. 1994. Jumping performance of hylid frogs measured with high-speed cine film. Journal of Experimental Biology 188: 131- 141.
  30. McGowan, C. P., Baudinette, R. V., Usherwood, J. R. and Biewener A. A. 2005. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies. Journal of Experimental Biology 208: 2741-2751.
  31. Paul, G. S., 1988: Predatory Dinosaurs of the World, Simon & Schuster, New York
  32. Pontzer, H., Allen, V. and Hutchinson, J. R., 2009 Biomechanics of Running Indicates Endohermy in Bipedal Dinosaurs, PLoS ONE, 4 (11):e7783 doi:10.1371/journal.pone.0007783.
  33. Rainforth, E. C. and Manzella, M., 2007: Estimating speeds of dinosaurs from trackways: a re-evaluation of assumptions. GANJ 24: Contributions to the paleontology of New Jersey (II) (Ed. Rainforth E. C. ), p. 41-48.
  34. Russell, D. A. and Beland, P. 1976. Running Dinosaurs, Nature 264: 486.
  35. Sellers, W. I., Manning, P. L., 2007: Estimating dinosaur maximum running speeds using evolutionary robotics, Proceeding of the Royal Society., vol. B 274, p. 2711- 2716.
  36. Thulborn, R. A., 1981: Estimated speed of a giant bipedal dinosaur, Nature, vol. 292, p. 273-274.
  37. Thulborn, R. A., 1989: The Gais of dinosaurs. In. Gillette, D. D. and Lockley, M. G. eds., Dinosaur Tracks and Traces, p. 39-50. Cambridge University Press,
  38. Thullborn, R. A., 1990: Dinosaur Tracks, Chapman & Hall, London.
  39. Usami, Y., 2011a, Was Tyrannosaurus really not a fast runner? Reports of faculty of engineering (in Japanese), Kanagawa University, pp13-17.
  40. Usami, Y., 2011b: On the possibility of fast running of heavy theropod Tyrannosaurus. Submitted to BIOPHYSICS.
  41. Usami, Y., 2011c: How fast Tyrannosaurus could run ? Submitted to BIOPHYSICS.
  42. Usami, Y., et. al., 1998: Reconstruction of Extinct Animals in the Computer. Reconstruction of Extinct Animals in the Computer. In. Adami, C., Belew, R. K., Kitano, H. and Taylor C.E. eds., Artificial Life VI, p. 173-177. MIT Press, UCLA.
  43. Wallace, R. L. and Brooks, W. S. 2003. A dinosaur trackways exerceis, Bioscene, vol. 29, p. 3-7.
  44. Weis-Fogh, T., Alexander, R. Mc. N. and Pedley, T. J. 1977. The sustained power output from striated muscle. In, Pedley, T. ed., Scale Effects in Animal Locomotion, p. 511-525. Academic Pres Inc., New York.
  45. Wilson, R. S., Franklin, C. E. and James, R. S. 2000. Allometric scaling relationships of jumping performance in the striped marsh frog Limnodynastes peronii. Journal of Experimental Biology 203: 1937- 1946.
Download


Paper Citation


in Harvard Style

Usami Y. (2011). COULD TYRANNOSAURUS RUN FAST? - Mechanical Power Calculation for 15.7 m/s Tyrannosaurus Running . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 13-22. DOI: 10.5220/0003652100130022


in Bibtex Style

@conference{ecta11,
author={Yoshiyuki Usami},
title={COULD TYRANNOSAURUS RUN FAST? - Mechanical Power Calculation for 15.7 m/s Tyrannosaurus Running},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)},
year={2011},
pages={13-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003652100130022},
isbn={978-989-8425-83-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)
TI - COULD TYRANNOSAURUS RUN FAST? - Mechanical Power Calculation for 15.7 m/s Tyrannosaurus Running
SN - 978-989-8425-83-6
AU - Usami Y.
PY - 2011
SP - 13
EP - 22
DO - 10.5220/0003652100130022