PATTERN CLUSTERING USING ANTS COLONY, WARD METHOD AND KOHONEN MAPS

Rosangela Villwock, Maria Teresinha Arns Steiner, Paulo Henrique Siqueira

Abstract

The goal of this paper is to propose improvements to the ACA (Ant-based Clustering Algorithm), and evaluate its performance relative to the Ward Method; to the One-dimensional Kohonen Maps and to the ACAM (Ant-based Clustering Algorithm Modified) algorithm. The algorithm containing the improvements will be referred here by “proposed” algorithm. Its the main changes were: the introduction of a comparison between the probability of dropping a pattern at the position chosen randomly and the probability of dropping this pattern at its current position; the introduction of an evaluation of the probability of a neighboring position when the decision to drop a pattern is positive and the cell in which the pattern should be dropped is occupied; and the replacement of the pattern carried by an ant, in case this pattern is not dropped within 100 consecutive iterations. To assess the performance of the proposed algorithm three real and public databases were used (Iris, Wine and Pima Indians Diabetes). The results showed superiority of the proposed algorithm when comparing with the ACAM algorithm in two of the three databases.

References

  1. Boryczka, U. Finding groups in data: Cluster analysis with ants. Applied Soft Computing, v. 9, p. 61-70, 2009.
  2. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proceedings of the First International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 1 (pp. 356-365). Cambridge, MA: MIT Press, 1991.
  3. Dorigo, M., Stützle, T. Ant colony optimization. Cambridge: MIT Press, 2004.
  4. Handl, J.; Knowles, J.; Dorigo, M. Ant-Based Clustering and Topographic Mapping. Artificial Life, v. 12, n. 1, p. 35-61, 2006.
  5. Ho, Y. C., Pepune, D. L. Simple Explanation of the NoFree-Lunch Theorem and Its Implications. Journal of Optimization Theory and Applications, v. 115, n. 3, p. 549-570, 2002.
  6. Johnson, R. A., Wichern, D. W. Applied Multivariate Statistical Analysis. Fourth Edition. New Jersey: Prentice Hall, 1998.
  7. Kohonen, T. Self-organizing maps. Berlin: Springer Verlag, 2001.
  8. MATLAB R2008b - The MatWorks, MATLAB (R2008b), The MathWorks Inc., Natick, 2008.
  9. Tan, P. N., Steinbach, M., Kumar, V. Introduction to Data Mining. Inc. Boston, MA, USA: Addison-Wesley Longman Publishing Co., 2005.
  10. Tan, S. C., Ting, K. M., Teng, S. W. Examining Dissimilarity Scaling in Ant Colony Approaches to Data Clustering. In: ACAL, 2007. ACAL 2007. Springer-Verlag, 2007.
  11. Tucci, M., Raugi, M. A Sequential Algorithm for Training the SOMPrototypes Based on Higher-Order Recursive Equations. Advances in Artificial Neural Systems, v. 2010, p. 1-10, 2010.
  12. Villwock, R. Técnicas de Agrupamento e de Hierarquização no Contexto de Kdd - Aplicação a Dados Temporais de Instrumentação GeotécnicaEstrutural da Usina Hidrelétrica de Itaipu. 125 f. Tese (Doutorado em Métodos Numéricos em Engenharia) - Setor de Ciências Exatas, Universidade Federal do Paraná, Curitiba, 2009.
  13. Villwock, R.; Steiner, M. T. A. Agrupamento baseado em Colônia de Formigas: Estudo Comparativo de Algoritmos para Recuperação dos Grupos. In: XII Encontro Regional de Matemática Aplicada e Computacional, Foz do Iguaçú, 2008. XII Encontro Regional de Matemática Aplicada e Computacional. Foz do Iguaçú: 2008. CD-ROM.
  14. Villwock, R., Steiner, M. T. A. Análise do Desempenho do Algoritmo de Agrupamento Baseado em Colônia de Formigas Modificado. In: XXXII Congresso Nacional de Matemática Aplicada e Computacional, Cuiabá, 2009. XXXII Congresso Nacional de Matemática Aplicada e Computacional. Cuiabá: SBMAC, 2009a. CD-ROM.
  15. Villwock, R., Steiner, M. T. A. Análise do Desempenho de um Algoritmo de Agrupamento Modificado Baseado em Colônia de Formigas. In: XLI Simpósio Brasileiro de Pesquisa Operacional, Porto Seguro, 2009. XLI Simpósio Brasileiro de Pesquisa Operacional. Porto Seguro: SOBRAPO, 2009b. CDROM.
  16. Vizine, A. L., de Castro, L. N., Hruschka, E. R., Gudwin, R. R. Towards improving clustering ants: an adaptive ant clustering algorithm. Informatica, v. 29, p. 143- 154, 2005.
Download


Paper Citation


in Harvard Style

Villwock R., Arns Steiner M. and Siqueira P. (2011). PATTERN CLUSTERING USING ANTS COLONY, WARD METHOD AND KOHONEN MAPS . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 137-145. DOI: 10.5220/0003643301370145


in Bibtex Style

@conference{ecta11,
author={Rosangela Villwock and Maria Teresinha Arns Steiner and Paulo Henrique Siqueira},
title={PATTERN CLUSTERING USING ANTS COLONY, WARD METHOD AND KOHONEN MAPS},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)},
year={2011},
pages={137-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003643301370145},
isbn={978-989-8425-83-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)
TI - PATTERN CLUSTERING USING ANTS COLONY, WARD METHOD AND KOHONEN MAPS
SN - 978-989-8425-83-6
AU - Villwock R.
AU - Arns Steiner M.
AU - Siqueira P.
PY - 2011
SP - 137
EP - 145
DO - 10.5220/0003643301370145