AGENT-BASED SIMULATION OF MOLECULAR PROCESSES - An Application to Actin-polymerisation

Stefan Pauleweit, J. Barbara Nebe, Olaf Wolkenhauer

Abstract

Agent-based modelling is widely used in ecology, economics and the social sciences. For the life science it is an increasingly used technology. Here we use agent-based modelling to simulate the formation of actin filaments, which is a major part in the cytoskeleton of the cell and plays a role in a number of cell functions. We present in this paper three models with different levels of detail and show the potential of agent-based models in systems biology by comparing the simulations to already published results.

References

  1. Andrews, S. S. and Bray, D. (2004). Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol., 1(3-4):137-151.
  2. Cardelli, L., Caron, E., Gardner, P., Kahramanog?ullari, O., and Phillips, A. (2009). A process model of actin polymerisation. Electronic Notes in Theoretical Computer Science, 229(1):127-144. Proceedings of the Second Workshop From Biology to Concurrency and Back (FBTC 2008).
  3. Cooper, J. A. (1991). The role of actin polymerization in cell motility. Annu. Rev. Physiol., 53:585-605.
  4. Corradini, F., Merelli, E., and Vita, M. (2005). A multiagent system for modelling carbohydrate oxidation in cell. In Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H., Mun, Y., Taniar, D., and Tan, C., editors, Computational Science and Its Applications - ICCSA 2005, volume 3481 of Lecture Notes in Computer Science, pages 227-247. Springer Berlin / Heidelberg.
  5. Edelstein-Keshet, L. and Ermentrout, G. B. (1998). Models for the length distributions of actin filaments: I. simple polymerization and fragmentation. Bull. Math. Biol., 60(3):449-475.
  6. Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E., and Cluzel, P. (2005). Agentcell: a digital singlecell assay for bacterial chemotaxis. Bioinformatics, 21(11):2714-2721.
  7. Fujiwara, I., Vavylonis, D., and Pollard, T. D. (2007). Polymerization kinetics of adp- and adp-pi-actin determined by fluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A., 104(21):8827-8832.
  8. Galletta, B. J., Mooren, O. L., and Cooper, J. A. (2010). Actin dynamics and endocytosis in yeast and mammals. Curr. Opin. Biotechnol., in Press.
  9. Gheorghe, M., Stamatopoulou, I., Holcombe, M., and Kefalas, P. (2005). Modelling dynamically organised colonies of bio-entities. In Banaˆtre, J.-P., Fradet, P., Giavitto, J.-L., and Michel, O., editors, Unconventional Programming Paradigms, volume 3566 of Lecture Notes in Computer Science, pages 207-224. Springer Berlin / Heidelberg.
  10. Grabe, N. and Neuber, K. (2005). A multicellular systems biology model predicts epidermal morphology, kinetics and ca2+ flow. Bioinformatics, 21(17):3541-3547.
  11. Guo, K., Shillcock, J., and Lipowsky, R. (2009). Selfassembly of actin monomers into long filaments: Brownian dynamics simulations. J. Chem. Phys., 131(1):015102.
  12. Holcombe, M. (1988). X-machines as a basis for dynamic system specification. Softw. Eng. J., 3(2):69-76.
  13. Kiran, M., Coakley, S., Walkinshaw, N., McMinn, P., and Holcombe, M. (2008). Validation and discovery from computational biology models. Biosystems, 93(1- 2):141-150.
  14. Matschegewski, C., Staehlke, S., Loeffler, R., Lange, R., Chai, F., Kern, D. P., Beck, U., and Nebe, B. J. (2010). Cell architecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials, 31(22):5729-5740.
  15. Merelli, E., Armano, G., Cannata, N., Corradini, F., d'Inverno, M., Doms, A., Lord, P., Martin, A., Milanesi, L., Möller, S., Schroeder, M., and Luck, M. (2007). Agents in bioinformatics, computational and systems biology. Brief. Bioinform., 8(1):45-59.
  16. Mogilner, A. and Edelstein-Keshet, L. (2002). Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J., 83(3):1237-1258.
  17. Nebe, J. G. B., Luethen, F., Lange, R., and Beck, U. (2007). Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters. Macromol. Biosci., 7(5):567-578.
  18. Oda, T., Iwasa, M., Aihara, T., Maéda, Y., and Narita, A. (2009). The nature of the globular- to fibrous-actin transition. Nature, 457(7228):441-445.
  19. Pantaloni, D., Clainche, C. L., and Carlier, M. F. (2001). Mechanism of actin-based motility. Science, 292(5521):1502-1506.
  20. Pelham, R. J. and Chang, F. (2002). Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature, 419(6902):82-86.
  21. Pogson, M., Holcombe, M., Smallwood, R., and Qwarnstrom, E. (2008). Introducing spatial information into predictive nf-kappab modelling-an agent-based approach. PLoS One, 3(6):e2367.
  22. Pogson, M., Smallwood, R., Qwarnstrom, E., and Holcombe, M. (2006). Formal agent-based modelling of intracellular chemical interactions. Biosystems, 85(1):37-45.
  23. Pollard, T. D. and Cooper, J. A. (1986). Actin and actinbinding proteins. a critical evaluation of mechanisms and functions. Annu. Rev. Biochem., 55:987-1035.
  24. Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand, J. B., Higgs, H. N., Choe, S., and Pollard, T. D. (2001). Crystal structure of arp2/3 complex. Science, 294(5547):1679-1684.
  25. Stossel, T. P., Fenteany, G., and Hartwig, J. H. (2006). Cell surface actin remodeling. J. Cell Sci., 119(Pt 16):3261-3264.
  26. S ütterlin, T., Huber, S., Dickhaus, H., and Grabe, N. (2009). Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems. Bioinformatics, 25(16):2057-2063.
  27. Sun, T., Adra, S., Smallwood, R., Holcombe, M., and MacNeil, S. (2009). Exploring hypotheses of the actions of tgf-beta1 in epidermal wound healing using a 3d computational multiscale model of the human epidermis. PLoS One, 4(12):e8515.
  28. Thorne, B. C., Bailey, A. M., and Peirce, S. M. (2007). Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform., 8(4):245-257.
  29. Troisi, A., Wong, V., and Ratner, M. A. (2005). An agent-based approach for modeling molecular selforganization. Proc. Natl. Acad. Sci. USA, 102(2):255- 260.
  30. Walker, D., Wood, S., Southgate, J., Holcombe, M., and Smallwood, R. (2006). An integrated agentmathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J. Theor. Biol., 242(3):774-789.
Download


Paper Citation


in Harvard Style

Pauleweit S., Barbara Nebe J. and Wolkenhauer O. (2011). AGENT-BASED SIMULATION OF MOLECULAR PROCESSES - An Application to Actin-polymerisation . In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8425-78-2, pages 276-282. DOI: 10.5220/0003599702760282


in Bibtex Style

@conference{simultech11,
author={Stefan Pauleweit and J. Barbara Nebe and Olaf Wolkenhauer},
title={AGENT-BASED SIMULATION OF MOLECULAR PROCESSES - An Application to Actin-polymerisation},
booktitle={Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2011},
pages={276-282},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003599702760282},
isbn={978-989-8425-78-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - AGENT-BASED SIMULATION OF MOLECULAR PROCESSES - An Application to Actin-polymerisation
SN - 978-989-8425-78-2
AU - Pauleweit S.
AU - Barbara Nebe J.
AU - Wolkenhauer O.
PY - 2011
SP - 276
EP - 282
DO - 10.5220/0003599702760282