A WEB-BASED REPOSITORY OF REPRODUCIBLE SIMULATION EXPERIMENTS FOR SYSTEMS BIOLOGY

Michael A. Guravage, Roeland M. H. Merks

Abstract

Systems Biology requires increasingly complex simulation models. Effectively interpreting and building upon previous simulation results is both difficult and time consuming. Thus, simulation results often cannot be reproduced exactly; making it difficult for other modellers to validate results and take the next step in a simulation study. The Simulation Experiment Description Mark-up Language SED-ML, a subset of the Minimum Information About a Simulation Experiment(MIASE) guidelines, promises to solve this problem by prescribing the form and content of the information required to reproduce simulation experiments. SED-ML enable automatic rerunning of simulation experiments. Here, we present a web-based simulation-experiment repository that lets modellers develop SED-ML compliant simulation-experiment descriptions The system encourages modellers to annotate their experiments with text and images, experimental data and domain meta-information. These informal annotations aid organisation and classification of the simulations and provide rich search criteria. They complement SED-ML's formal precision to produce simulation-experiment descriptions that can be understood by both men and machines. The system combines both human-readable and formal machine-readable content, thus ensuring exact reproducibility of the simulation results of a modelling study.

References

  1. Aspeli, M. (2007). Professional Plone Development. Packt.
  2. Auersperg, P., Klein, J., and van Rees, R. (2007). ArchGenXML code generator.
  3. Bergmann, F. (2010). Simulation Experiment Description Markup Language (SED-ML): Level 1 Version 1 (Draft).
  4. Fulton, J. (2000). Introduction to the Zope Object Database. In Proceedings of the 8th International Python Conference.
  5. Hines, M., Morse, T., Migliore, M., Carnevale, N., and Shepherd, G. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(1):7-11.
  6. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006). COPASI-a COmplex PAthway SImulator. Bioinformatics, 22(24):3067.
  7. Knuth, D. (1984). Literate programming. The Computer Journal, 27(2):97.
  8. Köhn, D. and Le Novère, N. (2008). SED-ML-An XML Format for the Implementation of the MIASE Guidelines. In Computational Methods in Systems Biology, pages 176-190. Springer.
  9. Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., et al. (2006). BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34(suppl 1):D689.
  10. Merks, R. M. H., Guravage, M., Inzé, D., and Beemster, G. T. S. (2011). Virtualleaf: an open source framework for cell-based modeling of plant tissue growth and development. Plant Physiology, 155(656):666.
  11. Pastore, S. (2006). Web content management systems: using plone open source software to build a website for research institute needs. In Digital Telecommunications, , 2006. ICDT 7806. International Conference on, page 24.
  12. Sivakumaran, S., Hariharaputran, S., Mishra, J., and Bhalla, U. (2003). The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics, 19(3):408.
  13. Weibel, S., Kunze, J., Lagoze, C., and Wolf, M. (1998). Dublin core metadata for resource discovery. Internet Engineering Task Force RFC, 2413.
  14. Yu, T., Lawson, J. R., and Britten, R. D. (2009). A distributed revision control system for collaborative development of quantitative biological models. In Magjarevic, R., Lim, C. T., and Goh, J. C. H., editors, 13th International Conference on Biomedical Engineering, volume 23 of IFMBE Proceedings, pages 1908-1911. Springer Berlin Heidelberg.
  15. Yu, T., Lloyd, C., Nickerson, D., Cooling, M., Miller, A., Garny, A., Terkildsen, J., Lawson, J., Britten, R., Hunter, P., et al. (2011). The Physiome Model Repository 2. Bioinformatics.
Download


Paper Citation


in Harvard Style

A. Guravage M. and M. H. Merks R. (2011). A WEB-BASED REPOSITORY OF REPRODUCIBLE SIMULATION EXPERIMENTS FOR SYSTEMS BIOLOGY . In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8425-78-2, pages 134-141. DOI: 10.5220/0003598001340141


in Bibtex Style

@conference{simultech11,
author={Michael A. Guravage and Roeland M. H. Merks},
title={A WEB-BASED REPOSITORY OF REPRODUCIBLE SIMULATION EXPERIMENTS FOR SYSTEMS BIOLOGY},
booktitle={Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2011},
pages={134-141},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003598001340141},
isbn={978-989-8425-78-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - A WEB-BASED REPOSITORY OF REPRODUCIBLE SIMULATION EXPERIMENTS FOR SYSTEMS BIOLOGY
SN - 978-989-8425-78-2
AU - A. Guravage M.
AU - M. H. Merks R.
PY - 2011
SP - 134
EP - 141
DO - 10.5220/0003598001340141