Prosper Anouboudem Kinfack Fabrice, Hamam Yskandar, Djouani Karim


Wheelchairs users still face challenges when driving their standard design based vehicle. Given the matter, this work aims to implement an assisted control for a wheelchair, depending on the driving behaviour of the user. Therefore, a Bayesian network model will be implemented to help infer on the human behaviour. Thereafter, the inferred state of the user will serve as input to an ANFIS model. The role of the ANFIS model is to generate an assistive signal in order to compensate the input from the user.


  1. Araghi, M. H. and Menhaj, M. B. (2008). A combined collision cone and fuzzy based obstacle avoidance algorithm for the small size soccer robots. International Conference on Automation, Robotics and Control Systems, pages 151-158.
  2. Ayari, I. and Chatti, A. (2007). Reactive control using behaviour modelling of a mobile robot. International Journal of Computers, Communications & Control, Vol. II, pages 217-228.
  3. Bouslimi, W., Kassaagi, M., Lourdeaux, D., and Fuchs, P. (2005). Augmented nave bayesian network for driver behaviour modelling. Intelligent Vehicles Symposium, IEEE Proceedings.
  4. Burnham, G. O., Seo, J., and Bekey, G. A. (1974). Identification of human driver models in car following. IEEE transactions on automatic control.
  5. Chakravarthy, A. and Ghose, D. (1998). Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE transactions on systems, Man and cybernetics part A: systems and human, Vol. 28.
  6. Dario Salvucci, E. R. B. and Liu, A. (2001). Toward an integrated model of driver behaviour in a cognitive architecture. Transportation Research Record.
  7. Denai, M. A., Palis, F., and Zeghbib, A. (2004). Anfis based modelling and control of non-linear systems: a tutorial. IEEE International Conference on Systems, Man and Cybernetics, pages 3433-3438.
  8. Emam, H. (2010). dynamic modelling and control for the electronic wheelchair. PhD thesis, University of Versailles, France.
  9. Fiorini, P. and Shiller, Z. (1998). Motion planning in dynamic environment using velocity obstacles. International Journal of Robotics Research, Vol. 17, pages 760-772.
  10. Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Systems, Man, and Cybernetics, vol. 23, pages 665-685.
  11. Kim, J.-H., Hayakawa, S., Suzuki, T., Hayashi, K., Okuma, S., Tsuchida, N., Shimuzu, M., and Kido, S. (2004). Modelling of drivers collision avoidance behaviour based on piecewise linear model. IEEE conference on decision and control.
  12. Koashi, M., Hayakawa, S., Suzuki, T., Okuma, S., Tsuchida, N., Shimuzu, M., and Kido, S. (2003). Measurement and modelling of collision avoidance behaviour of drivers using three dimensional driving simulator. SICE annual conference in FUKUI.
  13. Koren, Y. and Boreinstein, J. (1991). Potential field methods and their inherent limitations for mobile robot navigation. Proceedings of the IEEE Conference on Robotics and Automation, pages 1398-1404.
  14. Kuge, N., Yamamura, T., Shimoyama, O., and Liu, A. (1998). A driver behaviour recognition method based on a driver model framework. society of automotive engineers.
  15. Langer, D., Rosenblatt, J., and Hebert, M. (1994). A behavior-based system for off-road navigation. IEEE Trans. Robotics and Automation, Vol. 10, No. 6, pages 776-782.
  16. Masoud, A. A. (2002). Evasion of multiple, intelligent pursuers in a stationary, cluttered environment: A harmonic potential field approach. Proceedings of the IEEE International Symposium on Intelligent Control.
  17. Murphy, K. (2007). Bayes net toolbox for matlab.
  18. Nefti, S., Oussalah, M., Djouani, K., And Pontnau, J. (2001). Intelligent adaptive mobile robot navigation. Journal of Intelligent and Robotic Systems, pages 311-329.
  19. Rosenblatt, J. K. (1997). DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis, The Robotics Institute of Carnegie Mellon University, Pittsburgh, Pennsylvania.
  20. Shimizuhira, W., Fujii, K., and Maeda, Y. (2004). Fuzzy behavior control for autonomous mobile robot in dynamic environment with multiple omnidirectional vision system. Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.
  21. Suzuki, T., Yamada, S., Hayakawa, S., Tsuchida, N., Tsuda, T., and Fujinami, H. (2005). Modelling of drivers collision avoidance behavior based on hybrid system model an approach with data clustering.
  22. Tezuka, S., Soma, H., and Tanifuji, K. (2006). A study of driver behaviour inference model at time of lane change using bayesian networks. Proceedings of IEE, ICIT.
  23. Thakur, K. P. (1997). Simulation of driver behaviour as a function of driver error and driver daydream factor.
  24. Yinka-Banjo, C. O. (2010). Collision avoidance in unstructured environments for autonomous robots: A behavioural modelling approach. Master's thesis, African Institute for Mathematical sciences, Cape Town, South Africa.

Paper Citation

in Harvard Style

Anouboudem Kinfack Fabrice P., Yskandar H. and Karim D. (2011). ADAPTIVE COMPENSATION SIGNAL FOR A WHEELCHAIR CONTROL USING ANFIS MODEL . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 123-129. DOI: 10.5220/0003537801230129

in Bibtex Style

author={Prosper Anouboudem Kinfack Fabrice and Hamam Yskandar and Djouani Karim},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},

in EndNote Style

JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
SN - 978-989-8425-74-4
AU - Anouboudem Kinfack Fabrice P.
AU - Yskandar H.
AU - Karim D.
PY - 2011
SP - 123
EP - 129
DO - 10.5220/0003537801230129