ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS

Ionela Prodan, Sorin Olaru, Cristina Stoica, Silviu-Iulian Niculescu

Abstract

This paper addresses the optimal control of multiple (linear) agents in the presence of a set of adversary constraints which makes the convergence towards the ”zero” relative position an infeasible task. By consequence, this fixed point of the relative dynamics is replaced by a set of fixed points with different basin of attraction or even by limit cycles. The present analysis is based on the existence of an optimum control law over a receding horizon with one step ahead constraint. The feasible explicit solution in terms of a piecewise affine control law is analyzed in order to characterize the limit behavior of an agent.

References

  1. Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. (2002). The Explicit Linear Quadratic Regulator for Constrained Systems. Automatica, 38(1):3-20.
  2. Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time systems. Systems & Control Letters, 11(3):243-248.
  3. Bobrow, J., Dubowsky, S., and Gibson, J. (1985). Timeoptimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3):3.
  4. Chetaev, N. (1952). On the instability of equilibrium in some cases where the force function is not maximum. Prikl. Mat. Mekh, 16(1).
  5. Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. O. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36:789-814.
  6. Pannocchia, G., Wright, S., and Rawlings, J. (2003). Existence and computation of infinite horizon model predictive control with active steady-state input constraints. IEEE Transactions on Automatic Control,, 48(6):1002-1006.
  7. Poincaré, H. and Magini, R. (1899). Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900), 10(1):128-130.
  8. Seron, M., De Dona, J., and Goodwin, G. (2002). Global analytical model predictive control with input constraints. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 1, pages 154-159, Sydney, Australia.
  9. Shiller, Z. (2000). Obstacle traversal for space exploration. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, volume 2, pages 989-994.
Download


Paper Citation


in Harvard Style

Prodan I., Olaru S., Stoica C. and Niculescu S. (2011). ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 344-349. DOI: 10.5220/0003535703440349


in Bibtex Style

@conference{icinco11,
author={Ionela Prodan and Sorin Olaru and Cristina Stoica and Silviu-Iulian Niculescu},
title={ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={344-349},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003535703440349},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS
SN - 978-989-8425-74-4
AU - Prodan I.
AU - Olaru S.
AU - Stoica C.
AU - Niculescu S.
PY - 2011
SP - 344
EP - 349
DO - 10.5220/0003535703440349