IMAGE DENOISING BASED ON LAPLACE DISTRIBUTION WITH LOCAL PARAMETERS IN LAPPED TRANSFORM DOMAIN

Vijay Kumar Nath, Anil Mahanta

Abstract

In this paper, we present a new image denoising method based on statistical modeling of Lapped Transform (LT) coefficients. The lapped transform coefficients are first rearranged into wavelet like structure, then the rearranged coefficient subband statistics are modeled in a similar way like wavelet coefficients. We propose to model the rearranged LT coefficients in a subband using Laplace probability density function (pdf) with local variance. This simple distribution is well able to model the locality and the heavy tailed property of lapped transform coefficients. A {\it maximum a posteriori} (MAP) estimator using the Laplace probability density function (pdf) with local variance is used for the estimation of noise free lapped transform coefficients. Experimental results show that the proposed low complexity image denoising method outperforms several wavelet based image denoising techniques and also outperforms two existing LT based image denoising schemes. Our main contribution in this paper is to use the local Laplace prior for statistical modeling of LT coefficients and to use MAP estimation procedure with this proposed prior to restore the noisy image LT coefficients.

References

  1. Bhuiyan, M. I. H., Ahmad, M. O., and Swamy, M. N. S. (2008). Wavelet-based image denoising with the normal inverse gaussian prior and linear mmse estimator. IET Image Processing, 2(4):203-217.
  2. Chang, S., Yu, B., and Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing,, 9:15321546.
  3. Duval, L. and Nguyen, T. Q. (2003). Lapped transform domain denoising using hidden markov trees. In IEEE International Conference on Image Processing, volume 1, pages 125-128.
  4. Duval, L. and Nguyen, T. Q. (2004). Hidden markov tree image denoising with redundant lapped transforms. In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 3, pages 193-196.
  5. Eom, I. K. and Kim, Y. S. (2004). Wavelet-based denoising with nearly arbitrarily shaped windows. IEEE Signal Processing Letters, 11(12):937-940.
  6. Fan, G. and Xia, X. G. (2001). Image denoising using local contexual hidden markov model in the wavelet domain. IEEE Signal Processing Letters, 8(5):125-128.
  7. Kazubek, M. (2003). Wavelet domain image denoising by thresholding and wiener filtering. IEEE Signal Processing Letters, 10(11):324-326.
  8. Malvar, H. S. (1989). The lot : Transform coding without blocking effects. IEEE Transactions on Accoustics, Speech and Signal Processing, 37(4):553-559.
  9. Malvar, H. S. (1992). Signal Processing with Lapped Transforms. Norwood, MA : Artech House.
  10. Malvar, H. S. (2000). Fast progressive image coding without wavelets. In Data Compression Conference, pages 243-252.
  11. Michak, M. K., Kozintsev, I., and Ramchandran, K. (1999). Low complexity image denoising based on statistical modelling of wavelet coefficient. IEEE Signal Processing Letters, 6(12):300-303.
  12. Rabbani, H. (2009). Image denoising in steerable pyramid domain based on local laplace prior. Pattern Recognition, 42:2181-2193.
  13. Rabbani, H. and Vafadust, M. (2008). Image / video denosing based on a mixture of laplace distributions with local parameters in multidimensional complex wavelet domain. Signal Processing, 88(11):158-173.
  14. Raghvendra, B. S. and Bhat, P. S. (2006). Image denosing using mixture distributions with lapped transforms. In National Conference of Communications, pages 217- 220.
  15. Sendur, L. and Selesnick, I. W. (2002). Bivariate shrinkage functions for wavelet-based denoising. IEEE Transactions on Signal Processing, 50:27442756.
  16. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment : From error visibility to structural similarity. IEEE Transactions on Image processing, 13(4):600-612.
  17. Xiong, Z., Guleryuz, O. G., and Orchard, M. T. (1996). A dct based embedded image coder. IEEE Signal Processing Letters, 3(11):289-290.
  18. Yang, S. and Nguyen, T. Q. (2003). Denoising in the lapped transform domain. In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 6, pages 173-176.
Download


Paper Citation


in Harvard Style

Kumar Nath V. and Mahanta A. (2011). IMAGE DENOISING BASED ON LAPLACE DISTRIBUTION WITH LOCAL PARAMETERS IN LAPPED TRANSFORM DOMAIN . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011) ISBN 978-989-8425-72-0, pages 67-72. DOI: 10.5220/0003516900670072


in Bibtex Style

@conference{sigmap11,
author={Vijay Kumar Nath and Anil Mahanta},
title={IMAGE DENOISING BASED ON LAPLACE DISTRIBUTION WITH LOCAL PARAMETERS IN LAPPED TRANSFORM DOMAIN},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)},
year={2011},
pages={67-72},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003516900670072},
isbn={978-989-8425-72-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2011)
TI - IMAGE DENOISING BASED ON LAPLACE DISTRIBUTION WITH LOCAL PARAMETERS IN LAPPED TRANSFORM DOMAIN
SN - 978-989-8425-72-0
AU - Kumar Nath V.
AU - Mahanta A.
PY - 2011
SP - 67
EP - 72
DO - 10.5220/0003516900670072