A NEW STEGANOGRAPHIC SCHEME BASED ON FIRST ORDER REED MULLER CODES - A New Steganographic Scheme

Houda Jouhari, El Mamoun Souidi

Abstract

Reed-Muller codes are widely used in communications and they have fast decoding algorithms. In this paper we present an improved data hiding technique based on the first order binary Reed-Muller syndrome coding. The proposed data hiding method can hide the same amount of data as known methods with reduction of time complexity from 2m(2m-1)2m+1 binary operations to 2m(2m -1)m binary operations .

References

  1. Bassalygo (1965). New upper bounds for error correcting codes. Problemy Peredachi Informatsii, 1(4):41-44.
  2. Bender, W., Butera, W., Gruhl, D., Hwang, R., Paiz, F. J., and Pogreb, S. (2000). Applications for data hiding. IBM Systems Journal, 39(3&4):547-568.
  3. Cox, I., Miller, M., Bloom, J., Fridrich, J., and Kalker, T. (2007). Digital Watermarking and Steganography. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition.
  4. Crandall, R. (1998). Some notes on steganography. http://os.inf.tu-dresden.de/˜westfeld/crandall.pdf.
  5. Dumer, I. I., Kabatiansky, G. A., and Tavernier, C. (2007). First-order binary reed-muller codes. Problemy Peredachi Informatsii, 43(3):66-74.
  6. Fontaine, C. and Galand, F. (2007). How can reed-solomon codes improve steganographic schemes? In Information Hiding, 9th International Workshop, IH 2007, volume 4567 of Lecture Notes in Computer Science, pages 130-144.
  7. Kahn, D. (1996). The history of steganography. In Information Hiding, volume 1174 of Lecture Notes in Computer Science, pages 1-5.
  8. Moulin, P. and Koetter, R. (2005). Data-hiding codes. Proceedings IEEE, 93(12):2083-2127.
  9. Munuera, C. (2007). Steganography and error-correcting codes. Signal Processing, 87(6):1528-1533.
  10. Schönfeld, D. and Winkler, A. (2007). Reducing the complexity of syndrome coding for embedding. In Information Hiding, 9th International Workshop, IH 2007, volume 4567 of Lecture Notes in Computer Science, pages 145-158.
  11. Sudan, M. (2000). List decoding: Algorithms and applications. In IFIP TCS, volume 1872 of Lecture Notes in Computer Science, pages 25-41.
  12. Westfeld, A. (2001). F5-a steganographic algorithm. In Information Hiding, volume 2137 of Lecture Notes in Computer Science, pages 289-302.
  13. Zhang, W. and Li, S. (2008). A coding problem in steganography. Des. Codes Cryptography, 46(1):67-81.
Download


Paper Citation


in Harvard Style

Jouhari H. and Souidi E. (2011). A NEW STEGANOGRAPHIC SCHEME BASED ON FIRST ORDER REED MULLER CODES - A New Steganographic Scheme . In Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2011) ISBN 978-989-8425-71-3, pages 351-356. DOI: 10.5220/0003512703510356


in Bibtex Style

@conference{secrypt11,
author={Houda Jouhari and El Mamoun Souidi},
title={A NEW STEGANOGRAPHIC SCHEME BASED ON FIRST ORDER REED MULLER CODES - A New Steganographic Scheme},
booktitle={Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2011)},
year={2011},
pages={351-356},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003512703510356},
isbn={978-989-8425-71-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2011)
TI - A NEW STEGANOGRAPHIC SCHEME BASED ON FIRST ORDER REED MULLER CODES - A New Steganographic Scheme
SN - 978-989-8425-71-3
AU - Jouhari H.
AU - Souidi E.
PY - 2011
SP - 351
EP - 356
DO - 10.5220/0003512703510356