A UML-EXTENDED APPROACH FOR MINING OLAP DATA CUBES IN COMPLEX KNOWLEDGE DISCOVERY ENVIRONMENTS

Alfredo Cuzzocrea

Abstract

In this paper, we propose theoretical assertions and practical instances of an innovative UML-extended approach for mining OLAP data cubes in complex knowledge discovery environments. This analytical contribution is further extended by means of a comprehensive set of case studies that clearly demonstrate the feasibility and the benefits of the proposed approach in the context of next generation Data-Warehousing/Data-Mining platforms.

References

  1. Cai, Y. D., Clutterx, D., Papex, G., Han, J., Welgex, M., and Auvilx, L. (2004) 'MAIDS: mining alarming incidents from data streams', in Proceedings of the 2004 ACM International Conference on Management of Data, pages 919-920.
  2. Cuzzocrea, A. (2007) 'An OLAM-based framework for complex knowledge pattern discovery in distributedand-heterogeneous-data-sources and cooperative information systems', in Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery, LNCS Vol. 4654, pages 181- 198.
  3. Cuzzocrea, A. (2009) 'OLAP intelligence: meaningfully coupling OLAP and data mining tools and algorithms', International Journal of Business Intelligence and Data Mining, 4(3-4): 213-218.
  4. Cuzzocrea, A. Furfaro, F., Masciari, E., and Saccà D. (2009) 'Improving OLAP analysis of multidimensional data streams via efficient compression techniques', in A. Cuzzocrea (ed.), “Intelligent Techniques for Warehousing and Mining Sensor Network Data”, IGI Global, 17-49.
  5. Cuzzocrea, A., Mazon, J.-N., Trujillo J., and Zubcoff, J. (2011) 'Model-driven data mining engineering: from solution-driven implementations to “composable” conceptual data mining models”, International Journal of Data Mining, Modelling and Management, to appear.
  6. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) 'Maximum likelihood from incomplete data via the EM algorithm', Journal of the Royal Statistical Society, Series B, 39(1):1-38.
  7. Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. (1992) 'Knowledge discovery in databases: an overview', AI Magazine, 13(3): 213-228.
  8. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Widener, T. (1996) 'The KDD process for extracting useful knowledge from volumes of data', Communications of the ACM, 39(11):27-34.
  9. Gaber, M. M., Zaslavsky, A. B., and Krishnaswamy, S. (2005) 'Mining data streams: a review', SIGMOD Record, 34(2): 18-26.
  10. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., and Pirahesh, H. (1997) 'Data cube: a relational aggregation operator generalizing group-by, cross-tab, and subtotals', Data Mining and Knowledge Discovery, 1(1):29-53.
  11. Han, J. (1997) 'OLAP mining: an integration of OLAP with data mining', in Proceedings of the 7th IFIP 2.6 Working Conference on Database Semantics, pages 1- 9.
  12. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B. W., Wang, J., and Cai, Y. D. (2005) 'Stream cube: an architecture for multi-dimensional analysis of data streams', Distributed and Parallel Databases, 18(2): 173-197.
  13. Heineman, G. T., and Councill, W. T. (2001) ComponentBased Software Engineering: Putting the Pieces Together, Addison-Wesley Professional, Reading, MA, USA.
  14. Inmon, W. H. (1996) 'The data warehouse and data mining', Communications of the ACM, 49(4)83-88.
  15. Microsoft Research (2009a) Data Mining eXtensions (DMX) Reference, http://msdn.microsoft.com/en-us/ library/ ms132058.aspx
  16. Microsoft Research (2009b) SQL Server Analysis Services - Data Mining, http://msdn.microsoft.com/en-us/ library/ bb510517.aspxQuinlan, J.R. (1986) 'Induction of decision trees', Machine Learning, 1(1):81-106.
  17. Tan, P.-N., Steinbach, M., and Kumar, V. (2005a) Introduction to data mining - Chapter 8: Cluster analysis: basic concepts and algorithms, AddisonWesley, Reading, MA, USA.
  18. Tan, P.-N., Steinbach, M., and Kumar, V. (2005b) Introduction to data mining - Chapter 9: Cluster analysis: additional issues and algorithms, AddisonWesley, Reading, MA, USA.
  19. Zubcoff, J., and Trujillo, J. (2006) 'Conceptual modeling for classification mining in data warehouses', in Proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, LNCS Vol. 4081, pages 566-575.
  20. Zubcoff, J., and Trujillo, J. (2007) 'A UML 2.0 profile to design association rule mining models in the multidimensional conceptual modeling of data warehouses', Data & Knowledge Engineering, 63(1):44-62.
  21. Zubcoff, J., Pardillo, J., and Trujillo, J. (2007a) 'Integrating clustering data mining into the multidimensional modeling of data warehouses with UML profiles', in Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery, LNCS Vol. 4654, pages 199-208.
  22. Zubcoff, J., Trujillo, J., and Cuzzocrea, A. (2007b) 'On the suitability of time series analysis on data warehouses', in Proceedings of the 1st IADIS European Conference on Data Mining, pages 17-24.
Download


Paper Citation


in Harvard Style

Cuzzocrea A. (2011). A UML-EXTENDED APPROACH FOR MINING OLAP DATA CUBES IN COMPLEX KNOWLEDGE DISCOVERY ENVIRONMENTS . In Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8425-53-9, pages 281-289. DOI: 10.5220/0003512302810289


in Bibtex Style

@conference{iceis11,
author={Alfredo Cuzzocrea},
title={A UML-EXTENDED APPROACH FOR MINING OLAP DATA CUBES IN COMPLEX KNOWLEDGE DISCOVERY ENVIRONMENTS},
booktitle={Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2011},
pages={281-289},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003512302810289},
isbn={978-989-8425-53-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - A UML-EXTENDED APPROACH FOR MINING OLAP DATA CUBES IN COMPLEX KNOWLEDGE DISCOVERY ENVIRONMENTS
SN - 978-989-8425-53-9
AU - Cuzzocrea A.
PY - 2011
SP - 281
EP - 289
DO - 10.5220/0003512302810289