GUIDELINES FOR THE CHOICE OF VISUALIZATION TECHNIQUES APPLIED IN THE PROCESS OF KNOWLEDGE EXTRACTION

Juliana Keiko Yamaguchi, Maria Madalena Dias, Clélia Franco

Abstract

Visualization techniques are tools that can improve analyst's insight into the results of knowledge discovery process or to directly explore and analyze data. They allows analysts to interact with the graphical representation to get new knowledge. The choice of visualization techniques must follow some criteria to guarantee a consistent data representation. This paper presents a study based on Grounded Theory that indicates parameters for select visualization techniques, which are: data type, task type, data volume, data dimension and position of the attributes in the display. These parameters are analyzed in the context of visualization technique categories: standard 1D - 3D graphics, iconographic techniques, geometric techniques, pixel-oriented techniques and graph-based or hierarchical techniques. The analysis over the association among these parameters and visualization techniques culminated in guidelines establishment to choose the most appropriate techniques according to the data characteristics and the objective of the knowledge discovery process.

References

  1. Allan, G. (2003). A critique of using grounded theory as a research method. Electronic Journal of Business Research Methods, 2(1):1-10.
  2. Ankerst, M. (2001). Visual data mining with pixeloriented visualization techniques. In Proceedings of the ACM SIGKDD Workshop on Visual Data Mining. Citeseer.
  3. Cockburn, A. and McKenzie, B. (2000). An evaluation of cone trees. People and Computers, pages 425-436.
  4. Dick, B. (2005). Grounded theory: a thumbnail sketch.
  5. Freitas, C., Chubachi, O. M., Luzzardi, P. R. G., and Cava, R. A. (2001). Introdução à visualização de informações. Revista de Informática Teórica e Aplicada, 8(2):143-158.
  6. Grinstein, G., Trutschl, M., and Cvek, U. (2001). High dimensional visualizations. In Proceedings of the 7th Data Mining Conference-KDD. Citeseer.
  7. Hofmann, H. (2008). Mosaic plots and their variants. In Chen, C., Härdle, W., and Unwin, A., editors, Handbook of Data Visualization, pages 617-642. Springer.
  8. Inselberg, A. (2008). Parallel Coordinates: Visualization, Exploration and Classification of High-Dimensional Data. In Chen, C., Härdle, W., and Unwin, A., editors, Handbook of Data Visualization, pages 643-680. Springer.
  9. Keim, D. A. (1997). Visual techniques for exploring databases.
  10. Keim, D. A. (2000). Designing pixel-oriented visualization techniques: Theory and applications. Visualization and Computer Graphics, IEEE Transactions on, 6(1):1-20.
  11. Keim, D. A. (2001). Visual exploration of large data sets. Communications of the ACM, 44(8):38-44.
  12. Keim, D. A. (2002). Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 8(1):1-8.
  13. Keim, D. A. and Kriegel, H. (1996). Visualization techniques for mining large databases: A comparison. IEEE Trans. on Knowl. and Data Eng., 8(6):923-938.
  14. Klippel, A., Hardisty, F., and Weaver, C. (2009). Starplots: How shape characteristics influence classification tasks. Cartography and Geographic Information Science, 36(2):149-163.
  15. LeBlanc, J.,Ward,M. O., andWittels, N. (1990). Exploring n-dimensional databases. In Proceedings of the 1st conference on Visualization'90, page 237. IEEE Computer Society Press.
  16. Lee, M. D., Reilly, R. E., and Butavicius, M. E. (2003). An empirical evaluation of chernoff faces, star glyphs, and spatial visualizations for binary data. In Proceedings of the Asia-Pacific symposium on Information visualisation, Volume 24, pages 1-10. Australian Computer Society, Inc.
  17. Morris, C. J., Ebert, D. S., and Rheingans, P. (2000). Experimental analysis of the effectiveness of features in chernoff faces. In Proc Spie Int Soc Opt Eng, volume 3905, pages 12-17. Citeseer.
  18. Myatt, G. J. (2007). Making sense of data: a practical guide to exploratory data analysis and data mining. Wiley-Blackwell.
  19. Nascimento, H. A. D. and Ferreira, C. B. R. (2005). Visualização de informações - uma abordagem prática. In XXV Congresso da Sociedade Brasileira de Computação, XXIV JAI, São Leopoldo, RS, Brazil. UNISINOS.
  20. Oliveira, M. C. F. and Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. IEEE Transactions on Visualization and Computer Graphics, 9(3):378-394.
  21. Orlikowski, W. J. (1993). Case tools as organizational change: investigating incremental and radical changes in systems development. MIS quarterly, 17(3):309- 340.
  22. Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004). Clutter reduction in multi-dimensional data visualization using dimension reordering. In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pages 89-96. IEEE.
  23. Pickett, R. M. and Grinstein, G. G. (1988). Iconographic displays for visualizing multidimensional data. In Proc. IEEE Conf. on Systems, Man and Cybernetics, IEEE Press, Piscataway, NJ, volume 514, page 519.
  24. Pillat, R. M., Valiati, E. R. A., and Freitas, C. M. D. S.(2005). Experimental study on evaluation of multidimensional information visualization techniques. In Proceedings of the 2005 Latin American conference on Human-computer interaction, pages 20-30. ACM.
  25. Rabelo, E., Dias, M., Franco, C., and Pacheco, R. C. S.(2008). Information visualization: Which is the most appropriate technique to represent data mining results?In CIMCA 7808: Proceedings of the 2008 International Conference on Computational Intelligence for Modelling Control & Automation, pages 1228-1233, Vienna, Austria. IEEE Computer Society.
  26. Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1991). Cone trees: animated 3d visualizations of hierarchical information. In Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology, pages 189- 194. ACM.
  27. Rodon, J. and Pastor, J. (2007). Applying grounded theory to study the implementation of an inter-organizational information system. Electronic Journal of Business Research Methods, 5(2):71-82.
  28. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In VL 7896: Proceedings of the 1996 IEEE Symposium on Visual Languages, pages 336-343, Boulder, Colorado. IEEE Computer Society.
  29. Shneiderman, B. (2006). Discovering business intelligence using treemap visualizations. Technical report, B-Eye: Business Intelligence Network.
  30. Wegman, E. J. (1990). Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association, 85(411):664-675.
Download


Paper Citation


in Harvard Style

Keiko Yamaguchi J., Madalena Dias M. and Franco C. (2011). GUIDELINES FOR THE CHOICE OF VISUALIZATION TECHNIQUES APPLIED IN THE PROCESS OF KNOWLEDGE EXTRACTION . In Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8425-53-9, pages 183-189. DOI: 10.5220/0003469901830189


in Bibtex Style

@conference{iceis11,
author={Juliana Keiko Yamaguchi and Maria Madalena Dias and Clélia Franco},
title={GUIDELINES FOR THE CHOICE OF VISUALIZATION TECHNIQUES APPLIED IN THE PROCESS OF KNOWLEDGE EXTRACTION},
booktitle={Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2011},
pages={183-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003469901830189},
isbn={978-989-8425-53-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - GUIDELINES FOR THE CHOICE OF VISUALIZATION TECHNIQUES APPLIED IN THE PROCESS OF KNOWLEDGE EXTRACTION
SN - 978-989-8425-53-9
AU - Keiko Yamaguchi J.
AU - Madalena Dias M.
AU - Franco C.
PY - 2011
SP - 183
EP - 189
DO - 10.5220/0003469901830189