Tobias Meisen, Philipp Meisen, Daniel Schilberg, Sabina Jeschke


Because of the increasing complexity of modern production processes, it is necessary to plan these processes virtually before realizing them in a real environment. On the one hand there are specialized simulation tools simulating a specific production technique with exactness close to the real object of the simulation. On the other hand there are simulations which simulate whole production processes, but often do not achieve prediction accuracy comparable to the specialized tools. The simulation of a production process as a whole achieving the needed accuracy is hard to realize. Incompatible file formats, different semantics used to describe the simulated objects and missing data consistency are the main causes of this integration problem. In this paper, a framework is presented that enables the interconnection of simulation tools of production engineering considering the specific knowledge of a certain domain (e.g. material processing). Therefore, an ontology-based integration approach using domain specific knowledge to identify necessary semantic transformations has been realized. The framework provides generic functionality which, if concretized for a domain, enables the system to integrate any domain specific simulation tool in the process.


  1. Bernstein, P., A., Haas, L. M., 2008. Information integration in the enterprise. In Communications of the ACM - Enterprise information integration and other tools for merging data, vol. 51, no. 9, pp. 72-79.
  2. Cerfontaine, P., Beer, T., Kuhlen, T., Bischof, C., 2008. Towards a exible and distributed simulation platform. In ICCSA 7808: Proceedings of the international conference on Computational Science and Its Applications, Part I, pp. 867-882, Springer-Verlag, Heidelberg.
  3. Chappell, D., 2004, Enterprise Service Bus: Theory in Practice, O'Reilly Media, 1st edition.
  4. Conrad, S., et. Al., 2006. Enterprise Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Praxisbeispiele, Spektrum, Heidelberg, 1st edition.
  5. Euzenat, J., Shvaiko, P., 2007. Ontology matching. Springer, Berlin, 1st edition.
  6. Fox, M., Long, D., 2003. PDDL2.1: An extension to PDDL for expressing temporal planning domains. In Journal of Artificial Intelligence Research, vol. 20, p. 2003.
  7. Ghallab, M., 2004. Automated planning: theory and practice. Elsevier/Morgan Kaufmann, Amsterdam.
  8. Giunchiglia, F., Shvaiko, P., Yatskevich, M., 2006, Discovering missing background knowledge in ontology matching. In Proceeding of the 2006 conference on ECAI 2006, pp. 382-386, IOS Press.
  9. Goh, C., H., 1997. Representing and reasoning about semantic conicts in heterogeneous information systems, PhD thesis, Massachusetts Institute of Technology.
  10. Gronau, N., 2010. Enterprise Resource Planning: Architektur, Funktionen und Management von ERPSystemen, Oldenbourg, 2nd edition.
  11. Gruber, T., R., 1993. A translation approach to portable ontology specifications. In Knowledge Acquisition, vol. 5, pp. 199-220.
  12. Halevy, A., Rajaraman, A., Ordille, J., 2006. Data integration: the teenage years. In VLDB'2006: Proceedings of the 32nd international conference on Very large data bases, pp. 9-16, VLDB Endowment.
  13. Hoffmann, J., Nebel, B., 2001. The planning system: Fast plan generation through heuristic search. In Journal of Artificial Intelligence Research, vol. 14, p. 2001.
  14. Horridge, M., Bechhofer, S., 2009. The OWL API: A Java API for Working with OWL 2 Ontologies. In Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2009), vol. 529 of CEUR Workshop Proceedings.
  15. Kashyap, V., Bussler, C., Moran, M., 2008. The Semantic Web, Semantics for Data and Services on the Web, Heidelberg: Springer-Verlag, Berlin.
  16. Kim, W., Seo, J., 1991. Classifying schematic and data heterogeneity in multidatabase systems. In Computer, vol. 24, no. 12, pp. 12-18, IEEE Computer Society Press Los Alamitos, CA, USA.
  17. Knublauch, H., et. Al., 2004. The Protégé OWL plugin: An Open Development Environment for Semantic Web Applications. In The Semantic Web ISWC 2004, vol. 3298 of Lecture Notes in Computer Science, pp. 229-243.
  18. Laschet, G., Neises, J., Steinbach, I., 1998. Micro Macrosimulation of casting processes. In 4iéme école d'été de “Modelisation numerique en thermique", vol. C8, pp. 1-42.
  19. Laschet, G., 2002. Homogenization of the thermal properties of transpiration cooled multi-layer plates. In Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 41-42, pp. 4535-4554.
  20. Lavigne, C., 2006. Advanced ETL with Pentaho Data Integration, Whitepaper, Breadboard BI.
  21. Leser, U., 2007. Informationsintegration: Architekturen und Methoden zur Integration verteilter und heterogener Datenquellen, Dpunkt-Verl., Heidelberg, 1st edition.
  22. Meisen, T., Schilberg, D., Henning, K., 2009. Planner Based Data Integration for Simulation Chains in Virtual Production. In Proceedings International Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB), pp. 100-108, Klung NaNa Vithya Press Limited Partnership.
  23. Myerson, J., M., 2002. The Complete Book of Middleware, Auerbach Publications, Boston, MA, USA, 1st edition.
  24. Panian, Z., 2005. Supply chain intelligence in ebusiness environment. In ICCOMP'05: Proceedings of the 9th WSEAS International Conference on Computers, pp. 1-6, World Scientic and Engineering Academy and Society (WSEAS).
  25. Rademakers, T., Dirksen, J., 2008. Open-Source ESBs in Action, Greenwich, CT, USA: Manning Publications Co., 1st edition.
  26. Rossiter, U., D., E., Mokrov, O., 2007. Integration des Simulationspaketes SimWeld in FEM Analyseprogramme zur Modellierung von Schweißprozessen. In Sysweld Forum 2007.
  27. Schilberg, D., Gramatke, A., Henning, K., 2008. Semantic Interconnection of Distributed Numerical Simulations Via SOA. In Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 7808, San Francisco, USA, pp. 894-897.
  28. Schilberg, D., 2010. Architektur eines Datenintegrators zur durchgängigen Kopplung von verteilten numerischen Simulationen. PhD thesis, RWTH Aachen University.
  29. Schmitz, G., Prahl, U., 2009. Toward a virtual platform for materials processing. In JOM Journal of the Minerals, Metals and Materials Society, vol. 61, pp. 19-23.
  30. Schroeder, W., Martin, K., Lorensen, B., 2004. The Visualization Toolkit, Kitware Inc., 3rd edition.
  31. Schulte, R., W., 2002. Predicts 2003: Enterprise service buses emerge, tech. rep., Gartner.
  32. Sirin, E., et. Al., 2007. Pellet: A practical owl-dl reasoner. In Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no. 2, pp. 51-53.
  33. Staab, S., Studer, R., 2009. Handbook on ontologies, Springer, Berlin, 2nd edition.
  34. Studer, R., Benjamins, V., R., Fensel, D., 1998. Knowledge engineering: Principles and methods. In Data and Knowledge Engineering, vol. 25, pp. 161- 197.
  35. Vassiliadis, P., Simitsis, A., Skiadopoulos, S., 2002. Conceptual modeling for etl processes. In DOLAP 7802: Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP, New York, NY, USA, pp. 14-21, ACM.
  36. White, C., 2005. Data Integration: Using ETL, EAI and EII Tools to Create an Integrated Enterprise, tech. rep., The Data Warehousing Institute.

Paper Citation

in Harvard Style

Meisen T., Meisen P., Schilberg D. and Jeschke S. (2011). APPLICATION INTEGRATION OF SIMULATION TOOLS CONSIDERING DOMAIN SPECIFIC KNOWLEDGE . In Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8425-53-9, pages 42-53. DOI: 10.5220/0003429700420053

in Bibtex Style

author={Tobias Meisen and Philipp Meisen and Daniel Schilberg and Sabina Jeschke},
booktitle={Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 13th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
SN - 978-989-8425-53-9
AU - Meisen T.
AU - Meisen P.
AU - Schilberg D.
AU - Jeschke S.
PY - 2011
SP - 42
EP - 53
DO - 10.5220/0003429700420053