MULTI-ROBOT DECENTRALIZED EXPLORATION USING A TRADE-BASED APPROACH

Zhi Yan, Nicolas Jouandeau, Arab Ali Cherif

Abstract

This paper addresses the problem of exploring an unknown environment by a coordinated team of robots. An important question is, which robot should explore which region? In this paper, we present a novel decentralized task allocation approach based on trading rules for multi-robot exploration. In the decentralized system, robots can make their own decisions according to the local information with limited communication. In contrast to previous approaches, our trade-based approach is designed to simulate the relationship between buyers and sellers in a business system, to achieve dynamic task allocation by using a mechanism of unsolicited bid. Our approach has been implemented and evaluated in simulation. The experimental results demonstrate a good performance of the proposed trade-based approach compared to previous approaches.

References

  1. Burgard, W., Moors, M., Fox, D., Simmons, R., and Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA'00), pages 476-481, San Francisco, CA, USA.
  2. Cao, Y. U., Fukunaga, A. S., and Kahng, A. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4(1):7-27.
  3. Dudek, G., Jenkin, M. R. M., Milios, E., and Wilkes, D. (1996). A taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375-397.
  4. Gerkey, B. P. and Mataric, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5):758-768.
  5. Gerkey, B. P. and Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9):939-954.
  6. Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The player/stage project: Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced Robotics (ICAR'03), pages 317-323, Coimbra, Portugal.
  7. Ko, J., Stewart, B., Fox, D., Konolige, K., and Limketkai, B. (2003). A practical, decision-theoretic approach to multi-robot mapping and exploration. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'03), pages 3232-3238, Las Vegas, NV, USA.
  8. Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1):83-97.
  9. LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.
  10. Marjovi, A., Nunes, J. G., Marques, L., and de Almeida, A. (2009). Multi-robot exploration and fire searching. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'09), pages 1929-1934, St. Louis, MO, USA.
  11. Rekleitis, I. M., Dudek, G., and Milios, E. E. (2000). Multirobot collaboration for robust exploration. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA'00), pages 3164- 3169, San Francisco, CA, USA.
  12. Stachniss, C., Mozos, O . M., and Burgard, W. (2009). Efficient exploration of unknown indoor environments using a team of mobile robots. Annals of Mathematics and Artificial Intelligence, 52(2):205ff.
  13. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71.
  14. Ulrich, I. and Borenstein, J. (1998). VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (ICRA'98), pages 1572-1577, Leuven, Belgium.
  15. Wurm, K. M., Stachniss, C., and Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'08), pages 1160- 1165, Nice, France.
  16. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the 2nd International Conference on Autonomous Agents (Agents'98), pages 47-53, Minneapolis, MN, USA.
  17. Yan, Z., Jouandeau, N., and Ali Cherif, A. (2010). Sampling-based multi-robot exploration. In Proceedings of the Joint 41th International Symposium on Robotics and 6th German Conference on Robotics (ISR/ROBOTIK 2010), pages 44-49, Munich, Germany.
  18. Zlot, R., Stentz, A. T., Dias, M. B., and Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA'02), pages 3016-2023, Washington, DC, USA.
Download


Paper Citation


in Harvard Style

Yan Z., Jouandeau N. and Ali Cherif A. (2011). MULTI-ROBOT DECENTRALIZED EXPLORATION USING A TRADE-BASED APPROACH . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8425-75-1, pages 99-105. DOI: 10.5220/0003405800990105


in Bibtex Style

@conference{icinco11,
author={Zhi Yan and Nicolas Jouandeau and Arab Ali Cherif},
title={MULTI-ROBOT DECENTRALIZED EXPLORATION USING A TRADE-BASED APPROACH},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2011},
pages={99-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003405800990105},
isbn={978-989-8425-75-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - MULTI-ROBOT DECENTRALIZED EXPLORATION USING A TRADE-BASED APPROACH
SN - 978-989-8425-75-1
AU - Yan Z.
AU - Jouandeau N.
AU - Ali Cherif A.
PY - 2011
SP - 99
EP - 105
DO - 10.5220/0003405800990105