OPTIMAL SPATIAL ADAPTATION FOR LOCAL REGION-BASED ACTIVE CONTOURS - An Intersection of Confidence Intervals Approach

Qing Yang, Djamal Boukerroui

Abstract

In this paper, we propose within the level set framework a region-based segmentation method using local image statistics. An isotropic spatial kernel is used to define locality. We use the Intersection of Confidence Intervals (ICI) approach to define a pixel dependant local scale for the estimation of image statistics. The obtained scale is based on estimated optimal scales, in the sense of the mean-square error of a Local Polynomials Approximation of the observed image conditional on the current segmentation. In other words, the scale is ‘optimal’ in the sense that it gives the best trade-off between the bias and the variance of the estimates. The proposed approach performs very well, especially on images with intensity inhomogeneities.

References

  1. Boukerroui, D., Baskurt, A., Noble, A., and Basset, O. (2003). Segmentation of ultrasound imagesmultiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognit. Lett., 24:779- 790.
  2. Boukerroui, D., Basset, O., Baskurt, A., and Noble, A. (1999). Segmentation of echocardiographic data. Multiresolution 2D and 3D algorithm based on gray level statistics. In MICCAI, pages 516-524, Cambridge, England. Springer-Verlag.
  3. Brox, T. and Cremers, D. (2009). On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional. Int. J. Comput. Vis., 84(2):184-193.
  4. Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Trans. Image Process., 10(2):266-277.
  5. Katkovnik, V., Egiazarian, K., and Astola, J. (2002). Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule. J. Math. Imag. Vis., 16(3):223-235.
  6. Katkovnik, V., Egiazarian, K., and Astola, J. (2006). Local approximation techniques in signal and image processing. The Int. Society for Optical Eng., Washington.
  7. Katkovnik, V., Foi, A., Egiazarian, K., and Astola, J. (2010). From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis., 86:1-32.
  8. Lankton, S. and Tannenbaum, A. (2008). Localizing regionbased active contours. IEEE Trans. Image Process., 17(11):2029-2039.
  9. Li, C., Kao, C.-Y., Gore, J. C., and Ding, Z. (2008). Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process., 17(10):1940-1949.
  10. Mumford, D. and Shan, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42:577-685.
  11. Osher, S. and Paragois, N. (2003). Geometric level set methods in imaging vision and graphics. Springer Verlag.
  12. Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12-49.
  13. Rousson, M., Brox, T., and Deriche, R. (2003). Active unsupervised texture segmentation on a diffusion based feature space. Technical Report 4695, INRIA.
  14. Wang, L., Li, C., Sun, Q., Xia, D., and Kao, C.-Y. (2009). Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph., 33(7):520-531.
  15. Yezzi, A., Tsai, A., and Willsky, A. (2002). A fully global approach to image segmentation via coupled curve evolution equations. J. Visual Communication Image Representation, 13(1-2):195-216.
Download


Paper Citation


in Harvard Style

Yang Q. and Boukerroui D. (2011). OPTIMAL SPATIAL ADAPTATION FOR LOCAL REGION-BASED ACTIVE CONTOURS - An Intersection of Confidence Intervals Approach . In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011) ISBN 978-989-8425-46-1, pages 87-93. DOI: 10.5220/0003379100870093


in Bibtex Style

@conference{imagapp11,
author={Qing Yang and Djamal Boukerroui},
title={OPTIMAL SPATIAL ADAPTATION FOR LOCAL REGION-BASED ACTIVE CONTOURS - An Intersection of Confidence Intervals Approach},
booktitle={Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)},
year={2011},
pages={87-93},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003379100870093},
isbn={978-989-8425-46-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)
TI - OPTIMAL SPATIAL ADAPTATION FOR LOCAL REGION-BASED ACTIVE CONTOURS - An Intersection of Confidence Intervals Approach
SN - 978-989-8425-46-1
AU - Yang Q.
AU - Boukerroui D.
PY - 2011
SP - 87
EP - 93
DO - 10.5220/0003379100870093