A PROCEDURE FOR AUTOMATED REGISTRATION OF FINE ART IMAGES IN VISIBLE AND X-RAY SPECTRAL BANDS

Dmitry Murashov

Abstract

This paper presents a two-step procedure for automated registration of photographs and roentgenograms of fine art paintings. Grayscale local maxima in blurred images are used as the control points. The coherent point drift (CPD) point sets matching algorithm is combined with iterative procedure for excluding false correspondences. General projective transformation model is used for image registration. The precise step of the procedure reduces registration error obtained at the coarse step.

References

  1. Cappellini, V., et. al., 2005. An automatic registration algorithm for cultural heritage images. In ICIP'2005, 2005 International Conference on Image Processing. IEEE, 2, 566-569.
  2. Carcassoni, M., Hancock, E. R., 2003. Correspondence Matching with Modal Clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (12), 1609-1615.
  3. Chen Y. and Medioni, G., 1992. Object Modelling by Registration of Multiple Range Images. International Journal of Computer Vision and Image Understanding, 10(3), 145-155.
  4. Delponte, E., Isgrò, F., Odone, F., Verri, A., 2006. SVDmatching using SIFT features. Graphical Models, 68(5), 415-431.
  5. Harris, C., Stephens, M., 1998. A combined corner and edge detector. In Alvey Vision Conf. 147-151.
  6. Hartley, R., Zisserman, A., 2004. Multiple View Geometry in Computer Vision. Cambridge University Press.
  7. Heitz, F., Maitre, H. de Couessin, C., 1990. Event Detection in Multisource Imaging: Application to Fine Arts Painting Analysis. IEEE transactions on acoustics, speech, and signal processin, 38(1), 695- 704.
  8. Kammerer, P., Hanbury, A., Zolda, E., 2004. A Visualization Tool for Comparing Paintings and Their Underdrawings. In EVA'2004, Conference on Electronic Imaging & the Visual Arts, 148-153.
  9. Kirsh, A., and Levenson, R. S., 2000. Seeing through paintings: Physical examination in art historical studies. Yale U. Press, New Haven, CT.
  10. Kuijper, F., 2002. The Deep Structure of Gaussian Scale Space Images. Ph.D. Thesis, Utrecht University. ISBN 90-393-3061-1.
  11. Lowe, D. G., 1999. Object recognition from local scaleinvariant features. In ICCV'99, 7th International Conference on Computer Vision. IEEE, 1150-1157.
  12. Madsen, K., Nielsen, H. B., O. Tingleff, 2004. Methods for Non-Linear Least Squares Problems. Technical Report. University of Denmark.
  13. Maintz, J. B. A., Viegever, M. A., 1998. An Overview of Medical Image Registration Methods. URN: NBN:NL:UI:10-1874-18921, Utrecht University.
  14. Maitre, H., Schmitt F., Lahanier, C., 2001. 15 years of image processing and the fine arts. In: ICIP'2001, 2001 International Conference on Image Processing. IEEE, 1, 557-561.
  15. Martinez, K., Cupitt, J., Saunders, D., Pillay, R., 2002. Ten Years of Art Imaging Research. In Proceedings of the IEEE, 90(1), 28-41.
  16. Murashov, D., Kamyshanov, E., 2010. A Comparative Study of Point Set Registration Algorithms. In. PRIA10-2010, 10th Int. Conference on Pattern Recognition and Image Analysis: New Information Technologies, 2, 323-326.
  17. Myronenko, A., 2010. Song, X. Point Set Registration: Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence. Retrieved from IEEE Computer Society Digital Library: http://doi.ieee computersociety.org/10.1109/TPAMI.2010.46 Niblack, W., 1986. An Introduction to Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ.
  18. Pilu M., 1997. A direct method for stereo correspondence based on singular value decomposition. CVPR'97, 1997 Conference on Computer Vision and Pattern Recognition. IEEE, 261-266.
  19. Rusinkiewicz, S. Levoy, M., 2001. Efficient Variants of the ICP Algorithm, In 3DIM'01, 3rd International Conference on 3-D Digital Imaging and Modeling, 145-152.
  20. Schmid, C., Mohr, R., 1997. Local Greyvalue Invariants for Image Retrieval. PAMI, 19(5), 872-877.
  21. Scott, G. and Longuet-Higgins, H. C., 1991. An Algorithm for Associating the Features of Two Images. Proceedings of the Royal Society London, B244, 21- 26.
  22. Shapiro, L. S., Brady, J. M., 1992. Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10, (5), 283 - 288.
  23. Sharp, G., Lee, S., and Wehe, D., 2002. ICP registration using invariant features. IEEE Transactions on Pattern Anal., 24(1), 90-102.
  24. Stork, D. G., 2009. Computer Vision and Computer Graphics Analysis of Paintings and Drawings: An Introduction to the Literature. LNCS, Springer-Verlag, 5702, 9-24.
  25. Zhao, F., 2004. Image matching based on singular value decomposition. In PCM'2004, 5th Pacific Rim Conference on Multimedia, LNCS, Springer-Verlag 3333, 19-126.
  26. Zitova, B., Flusser, J., 2003. Image registration methods: a survey. Image and Vision Computing, 21(11), 977- 1000.
Download


Paper Citation


in Harvard Style

Murashov D. (2011). A PROCEDURE FOR AUTOMATED REGISTRATION OF FINE ART IMAGES IN VISIBLE AND X-RAY SPECTRAL BANDS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 162-167. DOI: 10.5220/0003374801620167


in Bibtex Style

@conference{visapp11,
author={Dmitry Murashov},
title={A PROCEDURE FOR AUTOMATED REGISTRATION OF FINE ART IMAGES IN VISIBLE AND X-RAY SPECTRAL BANDS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={162-167},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003374801620167},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - A PROCEDURE FOR AUTOMATED REGISTRATION OF FINE ART IMAGES IN VISIBLE AND X-RAY SPECTRAL BANDS
SN - 978-989-8425-47-8
AU - Murashov D.
PY - 2011
SP - 162
EP - 167
DO - 10.5220/0003374801620167