IMPROVING GEOMETRIC HASHING BY MEANS OF FEATURE DESCRIPTORS

Federico Tombari, Luigi Di Stefano

Abstract

Geometric Hashing is a well-known technique for object recognition. This paper proposes a novel method aimed at improving the performance of Geometric Hashing in terms of robustness toward occlusion and clutter. To this purpose, it employs feature descriptors to notably decrease the amount of false positives that generally arise under these conditions. An additional advantage of the proposed technique with respect to the original method is the reduction of the computation requirements, which becomes significant with increasing number of features.

References

  1. Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Surf: Speeded up robust features. Computer Vision and Image Understanding, 110(3):346-359.
  2. Beis, J. and Lowe, D. (1997). Shape indexing using approximate nearest-neighbour search in high dimensional spaces. In Proc. CVPR, pages 1000-1006.
  3. Chum, O. and Matas, J. (2006). Geometric hashing with local affine frames. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 879-884.
  4. Grimson, W. and Huttenlocher, D. (1990). On the sensitivity of geometric hashing. In Proc. Int. Conf. on Computer Vision, pages 334-338.
  5. Iwamura, M., Nakai, T., and Kise, K. (2007). Improvement of retrieval speed and required amount of memory for geometric hashing by combining local invariants. In Proc. BMVC2007, pages 1010-1019.
  6. Lamdan, Y. and Wolfson, H. (1991). On the error analysis of 'geometric hashing'. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 22-27.
  7. Lamdan, Y. and Wolfson, H. J. (1988). Geometric hashing: A general and efficient model-based recognition scheme. In Proc. ICCV, pages 238-249.
  8. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60:91-110.
  9. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. PAMI, 27(10):1615- 1630.
  10. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V. (2005). A comparison of affine region detectors. Int. J. Comput. Vision, 65(1-2):43-72.
  11. Sehgal, A. and Desai, U. (2003). 3d object recognition using bayesian geometric hashing and pose clustering*1. Pattern Recognition, 36(3):765-780.
  12. Simon, C. and Meddah, D. (2006). Geometric hashing method for model-based recognition of an object. US Patent 7027651.
  13. Tsai, F. (1996). A probabilistic approach to geometric hashing using line features. Computer Vision and Image Understanding, 63(1):182-195.
Download


Paper Citation


in Harvard Style

Tombari F. and Di Stefano L. (2011). IMPROVING GEOMETRIC HASHING BY MEANS OF FEATURE DESCRIPTORS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 419-425. DOI: 10.5220/0003355104190425


in Bibtex Style

@conference{visapp11,
author={Federico Tombari and Luigi Di Stefano},
title={IMPROVING GEOMETRIC HASHING BY MEANS OF FEATURE DESCRIPTORS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={419-425},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003355104190425},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - IMPROVING GEOMETRIC HASHING BY MEANS OF FEATURE DESCRIPTORS
SN - 978-989-8425-47-8
AU - Tombari F.
AU - Di Stefano L.
PY - 2011
SP - 419
EP - 425
DO - 10.5220/0003355104190425