COMBINATION OF CORRELATION MEASURES FOR DENSE STEREO MATCHING

Sylvie Chambon, Alain Crouzil

Abstract

In the context of dense stereo matching of pixels, we study the combination of different correlation measures. Considering the previous work about correlation measures, we use some measures that are the most significant in five kinds of measures based on: cross-correlation, classic statistics, image derivatives, nonparametric statistics and robust statistics. More precisely, this study validates the possible improvement of stereo-matching by combining complementary correlation measures and it also highlights the two measures that can be combined in order to take advantage of the different methods: Gradient Correlation measure (GC) and Smooth Median Absolute Deviation measure (SMAD). Finally, we introduce an algorithm of fusion that allows to combine automatically correlation measures.

References

  1. Aschwanden, P. and Guggenbl, W. (1992). Experimental results from a comparative study on correlation type registration algorithms. In Frstner, W. and Ruwiedel, S., editors, Robust computer vision: Quality of Vision Algorithms, pages 268-282. Wichmann.
  2. Bhat, D. and Nayar, S. (1998). Ordinal measures for image correspondence. PAMI, 20(4):415-423.
  3. Chambon, S. and Crouzil, A. (2004). Towards correlationbased matching algorithms that are robust near occlusions. In ICPR, volume 3, pages 20-23.
  4. Chambon, S. and Crouzil, A. (2011). Occlusions handling in dense stereo matching. Pattern Recognition. submitted.
  5. Crouzil, A., Massip-Pailhes, L., and Castan, S. (1996). A new correlation criterion based on gradient fields similarity. In ICPR, volume 1, pages 632-636.
  6. Delon, J. and Roug, B. (2004). Analytic study of the stereoscopic correlation. Research report 2004-19, CMLA (ENS Cachan).
  7. Kaneko, S., Murase, I., and Igarashi, S. (2002). Robust image registration by increment sign correlation. Pattern Recognition, 35(10):2223-2234.
  8. Lan, Z. and Mohr, R. (1997). Robust location based partial correlation. Technical Report RR-3186, INRIA, France.
  9. Moravec, H. (1980). Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Phd thesis, Carnegie Mellon University.
  10. Rousseeuw, P. and Croux, C. (1992). L1-statistical analysis and related methods. In Dodge, Y., editor, Explicit Scale Estimators with High Breakdown Point, pages 77-92. Elsevier.
  11. Rziza, M. and Aboutajdine, D. (2001). Dense disparity map estimation using cumulants. In Conference on Telecommunications, ConfTele.
  12. Scharstein, D. and Szeliski, R. (2002). A taxomomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1):7-42.
  13. Scharstein, D. and Szeliski, R. (2003). High-Accuracy Stereo Depth Maps Using Structured Light. In CVPR, volume 1, pages 195-202.
  14. Seitz, P. (1989). Using local orientational information as image primitive for robust object recognition. In Visual Communication and Image Processing IV, volume SPIE-1199, pages 1630-1639.
  15. Ullah, F., Kaneko, S., and Igarashi, S. (2001). Orientation Code Matching For Robust Object Search. IEICE Transactions on Information and Systems, E-84- D(8):999-1006.
  16. Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In ECCV, pages 151-158.
Download


Paper Citation


in Harvard Style

Chambon S. and Crouzil A. (2011). COMBINATION OF CORRELATION MEASURES FOR DENSE STEREO MATCHING . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 598-603. DOI: 10.5220/0003333305980603


in Bibtex Style

@conference{visapp11,
author={Sylvie Chambon and Alain Crouzil},
title={COMBINATION OF CORRELATION MEASURES FOR DENSE STEREO MATCHING},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={598-603},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003333305980603},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - COMBINATION OF CORRELATION MEASURES FOR DENSE STEREO MATCHING
SN - 978-989-8425-47-8
AU - Chambon S.
AU - Crouzil A.
PY - 2011
SP - 598
EP - 603
DO - 10.5220/0003333305980603