ON THE IMPORTANCE OF THE GRID SIZE FOR GENDER RECOGNITION USING FULL BODY STATIC IMAGES

Carlos Serra-Toro, V. Javer Traver, Raúl Montoliu, José M. Sotoca

Abstract

In this paper we present an study on the importance of the grid configuration in gender recognition from whole body static images. By using a simple classifier (AdaBoost) and the well-known Histogram of Oriented Gradients features we test several grid configurations. Compared with previous approaches, which use more complicated classifiers or feature extractors, our approach outperforms them in the case of the frontal view recognition and almost equals them in the case of the mixed view (i.e. frontal and back views combined without distinction).

References

  1. Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, Cambridge, Massachusetts.
  2. Cao, L., Dikmen, M., Fu, Y., and Huang, T. S. (2008). Gender recognition from body. In MM 7808: Proceeding of the 16th ACM international conference on Multimedia, pages 725-728, New York, NY, USA.
  3. Collins, M., Zhang, J., Miller, P., and Wang, H. (2009). Full body image feature representations for gender profiling. In IEEE ICCV Workshops, pages 1235-1242.
  4. Collins, M., Zhang, J., Miller, P., Wang, H., and Zhou, H. (2010). Eigenbody: Analysis of body shape for gender from noisy images. In International Machine Vision and Image Processing Conference.
  5. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE CVPR, volume 1, pages 886-893.
  6. Freund, Y. and Schapire, R. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory, volume 904 of LNCS, pages 23-37. Springer Berlin / Heidelberg.
  7. Gray, D., Brennan, S., and Tao, H. (2007). Evaluating appearance models for recognition, reacquisition, and tracking. Proc. IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS).
  8. Guo, G., Mu, G., and Fu, Y. (2010). Gender from body: A biologically-inspired approach with manifold learning. In Computer Vision ACCV 2009, volume 5996 of LNCS, pages 236-245. Springer Berlin / Heidelberg.
  9. Jolliffe, I. (2005). Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science. John Wiley & Sons, Ltd.
  10. Kang, P. and Cho, S. (2006). EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems. In Neural Information Processing, volume 4232 of LNCS, pages 837-846. Springer Berlin / Heidelberg.
  11. Martín-Félez, R., Mollineda, R. A., and Sánchez, J. S. (2010). A gender recognition experiment on the CASIA gait database dealing with its imbalanced nature. In VISAPP, volume 2, pages 439-444, Angers (France).
  12. Mease, D. and Wyner, A. (2008). Evidence contrary to the statistical view of boosting. Journal of Machine Learning Research, 9:131-156.
  13. Moghaddam, B. and Yang, M.-H. (2002). Learning gender with support faces. IEEE PAMI, 24(5):707-711.
  14. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., and Poggio, T. (1997). Pedestrian detection using wavelet templates. In IEEE CVPR, pages 193-99.
  15. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007). Robust object recognition with cortexlike mechanisms. IEEE PAMI, 29(3):411-426.
  16. van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M. (2008). Evaluation of color descriptors for object and scene recognition. In IEEE CVPR, Anchorage, Alaska, USA.
  17. Yu, S., Tan, T., Huang, K., Jia, K., and Wu, X. (2009). A study on gait-based gender classification. IEEE TIP, 18(8):1905-1910.
  18. Zhang, T. and Yu, B. (2005). Boosting with early stopping: Convergence and consistency. The Annals of Statistics, 33(4):1538-1579.
Download


Paper Citation


in Harvard Style

Serra-Toro C., Javer Traver V., Montoliu R. and M. Sotoca J. (2011). ON THE IMPORTANCE OF THE GRID SIZE FOR GENDER RECOGNITION USING FULL BODY STATIC IMAGES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 334-339. DOI: 10.5220/0003323803340339


in Bibtex Style

@conference{visapp11,
author={Carlos Serra-Toro and V. Javer Traver and Raúl Montoliu and José M. Sotoca},
title={ON THE IMPORTANCE OF THE GRID SIZE FOR GENDER RECOGNITION USING FULL BODY STATIC IMAGES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={334-339},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003323803340339},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - ON THE IMPORTANCE OF THE GRID SIZE FOR GENDER RECOGNITION USING FULL BODY STATIC IMAGES
SN - 978-989-8425-47-8
AU - Serra-Toro C.
AU - Javer Traver V.
AU - Montoliu R.
AU - M. Sotoca J.
PY - 2011
SP - 334
EP - 339
DO - 10.5220/0003323803340339