ANIMATION OF AIR BUBBLES WITH SPH

Markus Ihmsen, Julian Bader, Gizem Akinci, Matthias Teschner

Abstract

We present a physically-based multiphase model for simulating water and air bubbles with Smoothed Particle Hydrodynamics (SPH). Since the high density ratio of air and water is problematic for existing SPH solvers, we compute the density and pressure forces of both phases separately. The two-way coupling is computed according to the velocity field. The proposed model is capable of simulating the complex bubble flow, e. g. path instability, deformation and merging of bubbles and volume-dependent buoyancy. Furthermore, we present a velocity-based heuristic for generating bubbles in regions where air is likely trapped. Thereby, bubbles are generated on the fly, without explicitly simulating the air phase surrounding the liquid. Instead of deleting the bubbles when they reach the surface, we employ a simple foam model. By incorporating our model into the predictive-corrective SPH method, large time steps can be used. Thus, we can simulate scenarios of high resolution where the size of the bubbles is small in comparison to the liquid volume.

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. (2007). Adaptively sampled particle fluids. In SIGGRAPH 7807: ACM SIGGRAPH 2007 papers, page 48, New York, USA. ACM Press.
  2. Becker, M. and Teschner, M. (2007). Weakly compressible SPH for free surface flows. In SCA 7807: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 209-217, Aire-la-Ville, Switzerland. Eurographics Association.
  3. Bird, J. C., de Ruiter, R., Corbin, L., and Stone, H. A. (2010). Daughter bubble cascades produced by folding of ruptured thin films. Nature, 465:759-762.
  4. Bonet, J. and Kulasegaram, S. (2002). A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Applied Mathematics and Computation, 126(2-3):133-155.
  5. Cleary, P., Pyo, S., Prakash, M., and Koo, B. (2007). Bubbling and frothing liquids. ACM Transaction on Graphics, 26(3):97.
  6. Desbrun, M. and Cani, M.-P. (1996). Smoothed Particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop on Computer Animation and Simulation (EGCAS), pages 61-76. SpringerVerlag.
  7. Greenwood, S. T. and House, D. H. (2004). Better with bubbles: enhancing the visual realism of simulated fluid. In SCA 7804: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 287-296, Aire-la-Ville, Switzerland. Eurographics Association.
  8. Hadap, S. and Magnenat-Thalmann, N. (2001). Modeling Dynamic Hair as a Continuum. Computer Graphics Forum, 20(3):329-338.
  9. Hong, J.-M. and Kim, C.-H. (2003). Animation of Bubbles in Liquid. Computer Graphics Forum, 22:253-262.
  10. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. (2008). Bubbles Alive. In SIGGRAPH 7808: ACM SIGGRAPH 2008 papers, pages 1-4, New York, USA. ACM.
  11. Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. (2011). A Parallel SPH Implementation on Multi-core CPUs. Computer Graphics Forum. to appear.
  12. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. (2010). Boundary Handling and Adaptive Timestepping for PCISPH. In Proc. VRIPHYS, pages 79- 88.
  13. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. (2005). A Unified Lagrangian Approach to Solid-Fluid Animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics, pages 125-134.
  14. Kim, D., Song, O.-Y., and Ko, H.-S. (2010). A practical simulation of dispersed bubble flow. In ACM SIGGRAPH 2010 papers, SIGGRAPH 7810, pages 70:1- 70:5, New York, USA. ACM.
  15. Kück, H., Vogelgsang, C., and Greiner, G. (2002). Simulation and rendering of liquid foams. In In Proc. Graphics Interface 02 (2002), pages 81-88.
  16. Lorensen, W. and Cline, H. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH 7887: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 163-169, New York, USA. ACM Press.
  17. Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating water and smoke with an octree data structure. In SIGGRAPH 7804: ACM SIGGRAPH 2004 Papers, pages 457-462, New York, USA. ACM.
  18. Monaghan, J. (1992). Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys., 30:543-574.
  19. Monaghan, J. (2002). SPH compressible turbulence. Monthly Notices of the Royal Astronomical Society, 335(3):843-852.
  20. Monaghan, J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8):1703-1759.
  21. Moss, W., Yeh, H., Hong, J.-M., Lin, M. C., and Manocha, D. (2010). Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans. Graph., 29(3):1-13.
  22. Müller, M., Charypar, D., and Gross, M. (2003). Particlebased fluid simulation for interactive applications. In SCA 7803: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 154-159, Aire-la-Ville, Switzerland. Eurographics Association.
  23. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. (2005). Particle-based fluid-fluid interaction. In SCA 7805: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 237-244, New York, USA. ACM.
  24. Selle, A., Rasmussen, N., and Fedkiw, R. (2005). A vortex particle method for smoke, water and explosions. In SIGGRAPH 7805: ACM SIGGRAPH 2005 Papers, pages 910-914, New York, NY, USA. ACM.
  25. Solenthaler, B. and Pajarola, R. (2008). Density Contrast SPH Interfaces. In SCA 7808: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 211-218.
  26. Solenthaler, B. and Pajarola, R. (2009). Predictivecorrective incompressible SPH. In SIGGRAPH 7809: ACM SIGGRAPH 2009 Papers, pages 1-6, New York, USA. ACM.
  27. Solenthaler, B., Schläfli, J., and Pajarola, R. (2007). A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds, 18(1):69-82.
  28. Stam, J. and Fiume, E. (1995). Depicting fire and other gaseous phenomena using diffusion processes. In SIGGRAPH 7895: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 129-136, New York, USA. ACM Press.
  29. Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross, M. (2007). Real-time simulations of bubbles and foam within a shallow water framework. In SCA 7807: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 191-198, Aire-la-Ville, Switzerland. Eurographics Association.
  30. Zheng, W., Yong, J.-H., and Paul, J.-C. (2006). Simulation of bubbles. In SCA 7806: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 325-333, Aire-la-Ville, Switzerland. Eurographics Association.
Download


Paper Citation


in Harvard Style

Ihmsen M., Bader J., Akinci G. and Teschner M. (2011). ANIMATION OF AIR BUBBLES WITH SPH . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011) ISBN 978-989-8425-45-4, pages 225-234. DOI: 10.5220/0003322902250234


in Bibtex Style

@conference{grapp11,
author={Markus Ihmsen and Julian Bader and Gizem Akinci and Matthias Teschner},
title={ANIMATION OF AIR BUBBLES WITH SPH},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)},
year={2011},
pages={225-234},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003322902250234},
isbn={978-989-8425-45-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)
TI - ANIMATION OF AIR BUBBLES WITH SPH
SN - 978-989-8425-45-4
AU - Ihmsen M.
AU - Bader J.
AU - Akinci G.
AU - Teschner M.
PY - 2011
SP - 225
EP - 234
DO - 10.5220/0003322902250234