GLOBAL ILLUMINATION USING IMPERFECT VOLUMES

Pavlos Mavridis, Georgios Papaioannou

2011

Abstract

This paper introduces the concept of imperfect volumes, a fast one-pass point-based voxelization algorithm, and presents its applications to the global illumination problem. As often noted, diffuse indirect illumination has the characteristics of a low frequency function, consisting of smooth gradations. We exploit this by performing the indirect lighting computations on a rough approximation of the scene, the imperfect volume. The scene is converted on the fly to a dense point cloud, and each point is directly rendered to a volume texture, marking the corresponding voxel as occupied. A framebuffer reprojection scheme ensures that voxels visible to the main camera will get more points. Ray-marching is then used to compute the ambient occlusion or the indirect illumination of each voxel, and the results are stored using spherical harmonics. We demonstrate that the errors introduced by the imperfections in the volume are small and that our method maintains a high frame rate on scenes with high geometric complexity.

References

  1. Akenine-Möller, T., Haines, E., and Hoffman, N. (2008). Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA.
  2. Dachsbacher, C. and Stamminger, M. (2005). Reflective shadow maps. In Proceedings of the 2005 ACM Symposium on Interactive 3D Graphics and Games, pages 203-231. ACM SIGGRAPH.
  3. Dachsbacher, C. and Stamminger, M. (2006). Splatting indirect illumination. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pages 93-100. ACM SIGGRAPH, ACM Press.
  4. Eisemann, E. and Décoret, X. (2008). Single-pass gpu solid voxelization for real-time applications. In GI 7808: Proceedings of graphics interface 2008, pages 73-80. Canadian Information Processing Society.
  5. Jensen, H. W. (1996). Global Illumination Using Photon Maps. In Rendering Techniques 7896 (Proceedings of the Seventh Eurographics Workshop on Rendering), pages 21-30. Springer-Verlag/Wien.
  6. Kajiya, J. T. (1986). The Rendering Equation. In Computer Graphics (ACM SIGGRAPH 7886 Proceedings), volume 20, pages 143-150.
  7. Kaplanyan, A. and Dachsbacher, C. (2010). Cascaded light propagation volumes for real-time indirect illumination. In I3D 7810: Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pages 99-107, New York, NY, USA. ACM.
  8. Keller, A. (1997). Instant radiosity. In Computer Graphics (ACM SIGGRAPH 7897 Proceedings), volume 31, pages 49-56.
  9. K?rivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. (2005). Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics, 11(5).
  10. McGuire, M. and Luebke, D. (2009). Hardware-accelerated global illumination by image space photon mapping. In Proceedings of the 2009 ACM SIGGRAPH/EuroGraphics conference on High Performance Graphics, New York, NY, USA. ACM.
  11. Nijasure, M., Pattanaik, S., and Goel, V. (2004). Real-time global illumination on the GPU. Journal of Graphics Tools, 10(2).
  12. Papaioannou, G., Menexi, M. L., and Papadopoulos, C. (2010). Real-time volume-based ambient occlusion. IEEE Transactions on Visualization and Computer Graphics, 99(RapidPosts).
  13. Ramamoorthi, R. and Hanrahan, P. (2001). An efficient representation for irradiance environment maps. In SIGGRAPH 7801: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 497-500, New York, NY, USA. ACM.
  14. Ritschel, T., Englehardt, T., Grosch, T., Seidel, H.-P., Kautz, J., and Dachsbacher, C. (2009a). Micro-rendering for scable, parallel final gathering. ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2009), 28(5).
  15. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. (2008). Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics, 27(5).
  16. Ritschel, T., Grosch, T., and Seidel, H.-P. (2009b). Approximating dynamic global illumination in image space. In Proc. ACM Symposium on Interactive 3D Graphics and Games 2009 (I3D 7809).
  17. Shanmugam, P. and Arikan, O. (2007). Hardware accelerated ambient occlusion techniques on gpus. In I3D 7807: Proceedings of the 2007 symposium on Interactive 3D graphics and games, pages 73-80. ACM.
  18. Walter, B., Fernandez, S., Abree, A., Bala, K., Onikian, M., and Greenberg, D. P. (2005). Lightcuts: A scalable approach to illumination. In ACM SIGGRAPH 2005 Full Conference DVD-ROM, pages 1098-1107.
  19. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. (2009). An efficient GPU-based approach for interactive global illumination. volume 28.
  20. Ward, G. J., Rubinstein, F. M., and Clear, R. D. (1988). A Ray Tracing Solution for Diffuse Interreflection. In Computer Graphics (ACM SIGGRAPH 7888 Proceedings), volume 22, pages 85-92.
Download


Paper Citation


in Harvard Style

Mavridis P. and Papaioannou G. (2011). GLOBAL ILLUMINATION USING IMPERFECT VOLUMES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011) ISBN 978-989-8425-45-4, pages 160-165. DOI: 10.5220/0003318601600165


in Bibtex Style

@conference{grapp11,
author={Pavlos Mavridis and Georgios Papaioannou},
title={GLOBAL ILLUMINATION USING IMPERFECT VOLUMES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)},
year={2011},
pages={160-165},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003318601600165},
isbn={978-989-8425-45-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)
TI - GLOBAL ILLUMINATION USING IMPERFECT VOLUMES
SN - 978-989-8425-45-4
AU - Mavridis P.
AU - Papaioannou G.
PY - 2011
SP - 160
EP - 165
DO - 10.5220/0003318601600165