Hedjazi Badiâa, Aknine Samir, Ahmed-Nacer Mohamed, Benatchba Karima


Open complex systems as financial markets evolve in a highly dynamic and uncertain environment. They are often subject to significant fluctuations due to unanticipated behaviours and information. Modelling and simulating these systems by means of agent systems, i.e., through artificial markets is a valuable approach. In this article, we present our model of asynchronous artificial market consisting of a set of adaptive and heterogeneous agents in interaction. These agents represent the various market participants (investors and institutions). Investor Agents have advanced mental models for ordinary investors which do not relay on fundamental or technical analysis methods. On one hand, these models are based on the risk tolerance and on the other hand on the information gathered by the agents. This information results from overhearing influential investors in the market or the order books. We model the system through investor agents using learning classifier systems as reasoning models. As a result, our artificial market allows the study of overhearing impacts on the market. We also present the experimental evaluation results of our model.


  1. Andersen, J., Sornette, D., 2003. The $-game, European Physics Journal, pages 141-145.
  2. Arthur, W. B., 1994. Inductive Reasoning and Bounded Rationality, American Economic Review, 84(2).
  3. Bak, P., Paczuski, M., Shubik, M., 1996. Price variations in a stock market with many agents, arxiv.
  4. Balbo, F., Maudet, N., Saunier, J., 2004. Interactions opportunistes par l'écoute flottante, Université ParisDauphine.
  5. Buche, C., Septseault, C., De Loor, P., 2006. Proposition d'un modèle générique pour l'implémentation d'une famille de systèmes de classeurs, RSTI-RIA, 20(1).
  6. Cincotti, S., Ponta, L., Pastore, S., 2006. Informationbased multi-assets artificial stock market with heterogeneous agents, working paper, Geneva University.
  7. Derveeuw, J., 2008. Simulation multi-agents de marchés Financiers, Thèse Doctorat de l'Université des Sciences et Technologies de Lille.
  8. Dugdale, J., Pavard, B., SOUBIE, J.L., 2000. A Pragmatic Development of a Computer Simulation of an emergency Call Center, In Cooperative Systems Design, Frontiers in Artificial Intelligence and Applications, Rose Dieng et al., IOS Press.
  9. Holland, J. H., Holyoak, K. J., Nisbett, R. E., Thagard, P. R., 1982. Classifier systems, Q-morphisms and induction, In: Genetic Algorithms and Simulated Annealing, ed. L. D. Davis.
  10. Kotzé, Dr A. A., 2005. Stock Price Volatility: a primer, Financial Chaos Theory.
  11. LeBaron, B. L., Arthur, W.B., Palmer, R., 1999. Time series properties of an artificial stock market, Journal of Economic Dynamics and Control, 23, 1487-1516.
  12. Legras, F., 2003. Organisation dynamique d'équipes d'engins autonomes par écoute flottante, Thèse doctorat, ONERA, Toulouse.
  13. Markowitz, H. M., 1952. Portfolio Selection, Journal of Finance, 7(1), 77-91.
  14. Streichert F., Tanaka-Yamawaki M., Iwata M., 2006. Effect of Moving Averages in the Tickwise Tradings in the Stock Market. KES (3): 647-654.

Paper Citation

in Harvard Style

Badiâa H., Samir A., Mohamed A. and Karima B. (2011). OVERHEARING IN FINANCIAL MARKETS - A Multi-agent Approach . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8425-41-6, pages 342-350. DOI: 10.5220/0003293603420350

in Bibtex Style

author={Hedjazi Badiâa and Aknine Samir and Ahmed-Nacer Mohamed and Benatchba Karima},
title={OVERHEARING IN FINANCIAL MARKETS - A Multi-agent Approach},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
SN - 978-989-8425-41-6
AU - Badiâa H.
AU - Samir A.
AU - Mohamed A.
AU - Karima B.
PY - 2011
SP - 342
EP - 350
DO - 10.5220/0003293603420350