Virginio Cantoni, Alessandro Gaggia, Riccardo Gatti, Luca Lombardi


The purpose of the activity here described is the morphological and subsequently the geometrical and topological analysis of the active sites in protein surfaces for protein-ligand docking. The approach follows a sequence of three steps: i) the solvent-excluded-surface is analyzed and segmented in a number of pockets and tunnels; ii) the candidate binding sites are detected through a structural matching of pockets and ligand, both represented through a suitable Extended Gaussian Image modality; iii) the loci of compatible positions of the ligand is identified through mathematical morphology. This representation of ligand and candidate binding pockets, the comparison of the morphological similarity and the identification of potential ligand docking are the novelties of this proposal.


  1. Bock, M.E., Garutti, C., Guerra, C., 2007. Spin image profile: a geometric descriptor for identifying and matching protein cavities. Proc. of CSB, San Diego.
  2. Cantoni, V., Gatti, R., Lombardi, L., 2010. Segmentation of SES for Protein Structure Analysis. In Proceedings of the 1st International Conference on Bioinformatics. BIOSTEC 2010. Valencia (ES). Jan 20-23, 2010, pp. 83-89.
  3. Frome, A., Huber, D., Kolluri, R., Baulow, T., Malik, J., 2004. Recognizing Objects in Range Data Using Regional Point Descriptors. Computer Vision - ECCV, (2004), pp. 224-237.
  4. Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M., 2006. A Method for Localizing Ligand Binding Pockets in Protein Structures. PROTEINS: Structure, Function, and Bioinformatics, 62, (2006), pp. 479-488.
  5. Horn, B.K.P., 1984. Extended Gaussian images. Proceedings of the IEEE, 72, 1671-1686.
  6. Hu, Z., Chung, R., Fung K. S. M. 2010. EC-EGI: enriched complex EGI for 3D shape registration. Machine Vision and Applications, 2, 177-188.
  7. Kang, S.B., Ikeuchi, K., 1991. Determining 3-D object pose using the complex extended Gaussian image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580-585.
  8. Kang, S., Ikeuchi, K., 1993. The complex EGI, a new representation for 3D pose determination. IEEE Trans. Pattern Anal. Mach. Intell., 15(7), 707-721.
  9. Matsuo, H., Iwata, A., 1994. 3-D Object Recognition Using MEGI Model from Range Data. Proc. 12th Int'l Conf. Pattern Recognition, Jerusalem, Israel, pp. 843- 846.
  10. Shulman-Peleg A., Nussinov, R., Wolfson, H., Recognition of Functional Sites in Protein Structures. J. Mol. Biol., 339, (2004), pp. 607-633.
  11. Wang, D., Zhang, J., Wong H.S., Li, Y., 2007. 3D Model Retrieval Based on Multi-Shell Extended Gaussian. G. Qiu et al. (Eds.): VISUAL 2007, LNCS 4781, SpringerVerlag Berlin Heidelberg, pp. 426-437.
  12. Zhang, J., Wong H.S., Yu, Z., 2006. 3D Model Retrieval Based on Volumetric Extended Gaussian Image and Hierarchical Self Organizing Map. MM'06, October 23-27, 2006, Santa Barbara, California, USA., ACM 1-59593-447-2/06/0010, 121-124.

Paper Citation

in Harvard Style

Cantoni V., Gaggia A., Gatti R. and Lombardi L. (2011). GEOMETRICAL CONSTRAINTS FOR LIGAND POSITIONING . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011) ISBN 978-989-8425-36-2, pages 204-209. DOI: 10.5220/0003166002040209

in Bibtex Style

author={Virginio Cantoni and Alessandro Gaggia and Riccardo Gatti and Luca Lombardi},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)},

in EndNote Style

JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)
SN - 978-989-8425-36-2
AU - Cantoni V.
AU - Gaggia A.
AU - Gatti R.
AU - Lombardi L.
PY - 2011
SP - 204
EP - 209
DO - 10.5220/0003166002040209